The Art of Radiometry

James M. Palmer
Barbara G. Grant

SPIE PRESS
Bellingham, Washington USA
Contents

Foreword ... xi
Preface ... xiii

Chapter 1 Introduction to Radiometry / 1
 1.1 Definitions ... 1
 1.2 Why Measure Light? .. 2
 1.3 Historical Background ... 4
 1.4 Radiometric Measurement Process ... 5
 1.5 Radiometry Applications ... 7
References ... 9

Chapter 2 Propagation of Optical Radiation / 11
 2.1 Basic Definitions ... 11
 2.1.1 Rays and angles .. 11
 2.1.2 System parameters ... 19
 2.1.3 Optical definitions ... 23
 2.2 Fundamental Radiometric Quantities ... 24
 2.2.1 Radiance .. 24
 2.2.2 Radiant exitance .. 26
 2.2.3 Irradiance ... 28
 2.2.4 Radiant intensity ... 29
 2.3 Radiometric Approximations .. 30
 2.3.1 Inverse square law ... 30
 2.3.2 Cosine3 law ... 31
 2.3.3 Lambertian approximation .. 32
 2.3.4 Cosine4 law ... 33
 2.4 Equation of Radiative Transfer .. 36
 2.5 Configuration Factors ... 38
 2.6 Effect of Lenses on Power Transfer .. 40
 2.7 Common Radiative Transfer Configurations .. 42
 2.7.1 On-axis radiation from a circular Lambertian disc ... 42
 2.7.2 On-axis radiation from a non-Lambertian disc ... 43
 2.7.3 On-axis radiation from a spherical Lambertian source 44
 2.8 Integrating Sphere ... 46
 2.9 Radiometric Calculation Examples .. 48
 2.9.1 Intensities of a distant star and the sun ... 48
4.3.2 Dielectrics ... 102
4.3.3 Gases .. 103
4.4 Practical Sources of Radiant Energy 104
4.4.1 Two major categories .. 104
4.4.2 Thermal sources .. 105
4.4.2.1 Tungsten and tungsten-halogen lamps 105
4.4.2.2 Other metallic sources 108
4.4.2.3 Dielectric thermal sources 108
4.4.2.4 Optical elements ... 109
4.4.2.5 Miscellaneous thermal sources 109
4.4.3 Luminescent sources ... 110
4.4.3.1 General principles .. 110
4.4.3.2 Fluorescent lamps .. 115
4.4.3.3 Electroluminescent sources 117
4.4.3.4 LED sources ... 117
4.4.3.5 Lasers ... 118
4.4.4 Natural sources .. 119
4.4.4.1 Sunlight .. 119
4.4.4.2 Skylight, planetary, and astronomical sources 120
4.4.4.3 Application: energy balance of the earth 121
4.5 Radiation Source Selection Criteria 121
4.6 Source Safety Considerations 123
4.7 Summary of Some Key Concepts 123

For Further Reading .. 123

References .. 124

Chapter 5 Detectors of Optical Radiation / 127

5.1 Introduction ... 127
5.2 Definitions ... 128
5.3 Figures of Merit .. 131
5.4 Catalog of most unpleasant noises 133
5.4.1 Introduction to noise concepts 133
5.4.2 Effective noise bandwidth 136
5.4.3 Johnson noise ... 137
5.4.3.1 Shot noise ... 139
5.4.3.3 1/f noise ... 139
5.4.3.4 Generation-recombination noise 140
5.4.3.5 Temperature fluctuation noise 141
5.4.3.6 Photon noise ... 141
5.4.3.7 Microphonic noise .. 142
5.4.3.8 Triboelectric noise ... 142
5.4.3.9 CCD noises .. 142
5.4.3.10 Amplifier noise .. 143
5.4.3.11 Quantization noise ... 143
5.4.4 Noise factor, noise figure, and noise temperature 143
5.4.5 Some noise examples .. 144
5.4.6 Computer simulation of Gaussian noise 147
5.5 Thermal Detectors ... 147
 5.5.1 Thermal circuit ... 147
 5.5.2 Thermoelectric detectors ... 150
 5.5.2.1 Basic principles .. 150
 5.5.2.2 Combinations and configurations 153
 5.5.3 Thermoresistive detector: bolometer 155
 5.5.4 Pyroelectric detectors .. 157
 5.5.4.1 Basic principles .. 157
 5.5.4.2 Pyroelectric materials ... 160
 5.5.4.3 Operational characteristics of pyroelectric detectors ... 162
 5.5.4.4 Applications of pyroelectric detectors 162
 5.5.5 Other thermal detectors ... 163
5.6 Photon Detectors ... 164
 5.6.1 Detector materials ... 164
 5.6.2 Photoconductive detectors .. 169
 5.6.2.1 Basic principles .. 169
 5.6.2.2 Noises in photoconductive detectors 173
 5.6.2.3 Characteristics of photoconductive detectors 174
 5.6.2.4 Applications of photoconductive detectors 175
 5.6.3 Photoemissive detectors ... 175
 5.6.3.1 Basic principles .. 175
 5.6.3.2 Classes of emitters ... 176
 5.6.3.3 Dark current ... 181
 5.6.3.4 Noises in photoemissive detectors 182
 5.6.3.5 Photoemissive detector types 183
 5.6.4 Photovoltaic detectors ... 185
 5.6.4.1 Basic principles .. 185
 5.6.4.2 Responsivity and quantum efficiency 195
 5.6.4.3 Noises in photovoltaic detectors 196
 5.6.4.4 Photovoltaic detector materials and configurations 198
5.7 Imaging Arrays .. 199
 5.7.1 Introduction .. 199
 5.7.2 Photographic film ... 199
 5.7.2.1 History .. 199
 5.7.2.2 Physical characteristics ... 201
 5.7.2.3 Spectral sensitivity ... 201
 5.7.2.4 Radiometric calibration ... 201
 5.7.2.5 Spatial resolution .. 202
 5.7.2.6 Summary .. 202
 5.7.3 Electronic detector arrays .. 203
 5.7.3.1 History .. 203
 5.7.3.2 Device architecture description and tradeoffs 203
Contents

- 5.7.3.3 Readout mechanisms .. 204
- 5.7.3.4 Comparison ... 207
- 5.7.4 Three-color CCDs ... 207
- 5.7.5 Ultraviolet photon-detector arrays 208
- 5.7.6 Infrared photodetector arrays .. 209
- 5.7.7 Uncooled thermal imagers ... 210
- 5.7.8 Summary ... 211

For Further Reading .. 211

References ... 213

Chapter 6 Radiometric Instrumentation / 215

- 6.1 Introduction .. 215
- 6.2 Instrumentation Requirements ... 215
 - 6.2.1 Ideal radiometer ... 215
 - 6.2.2 Specification sheet .. 215
 - 6.2.3 Spectral considerations ... 216
 - 6.2.4 Spatial considerations ... 217
 - 6.2.5 Temporal considerations ... 217
 - 6.2.6 Make or buy? ... 218
- 6.3 Radiometer Optics ... 218
 - 6.3.1 Introduction ... 218
 - 6.3.2 Review of stops and pupils .. 218
 - 6.3.3 The simplest radiometer: bare detector 219
 - 6.3.4 Added aperture .. 219
 - 6.3.5 Basic radiometer ... 221
 - 6.3.6 Improved radiometer ... 223
 - 6.3.7 Other methods for defining the field of view 224
 - 6.3.8 Viewing methods .. 224
 - 6.3.9 Reference sources ... 226
 - 6.3.10 Choppers ... 226
 - 6.3.11 Stray light ... 227
 - 6.3.12 Summing up ... 228
- 6.4 Spectral Instruments ... 228
 - 6.4.1 Introduction ... 228
 - 6.4.2 Prisms and gratings .. 230
 - 6.4.3 Monochromator configurations 231
 - 6.4.4 Spectrometers .. 234
 - 6.4.5 Additive versus subtractive dispersion 235
 - 6.4.6 Arrays ... 236
 - 6.4.7 Multiple slit systems .. 236
 - 6.4.8 Filters .. 236
 - 6.4.9 Interferometers ... 237
 - 6.4.10 Fourier transform infrared 237
 - 6.4.11 Fabry-Perot ... 238
Foreword

The material for this book grew out of a first-year graduate-level course, “Radiometry, Sources, Materials, and Detectors,” that Jim Palmer created and taught at the University of Arizona College of Optical Sciences for many years. The book is organized by topic in a similar manner, with the first five chapters presenting radiation propagation and system building blocks, and the final two chapters focusing on instruments and their uses. Chapter 1 provides an overview and history of the subject, and Chapter 2 presents basic concepts of radiometry, including terminology, laws, and approximations. It also includes examples that will allow the reader to see how key equations may be used to address problems in radiation propagation. Chapter 3 introduces radiometric properties of materials such as reflection and absorption, and Chapter 4 extends that discussion via a detailed consideration of sources. Point and area detectors of optical radiation are considered in Chapter 5, which also includes thermal and photon detection mechanisms, imaging arrays, and a discussion about film.

In Chapter 6, the focus shifts to instrumentation. Concepts introduced in Chapter 2 are here applied to instrument design. Practical considerations relating to radiometer selection are detailed, and a “Make or Buy?” decision is explored. Several monochromator configurations are examined, and spectral instruments are discussed. Proceeding from instruments to their uses, Chapter 7 details types of measurements that may be made with radiometric systems and provides a discussion of measurement error. The philosophy of calibration is introduced, and several radiometric calibration configurations are considered.

The material in the appendices covers a variety of topics, including terminology, standards, and discussions of specific issues such as Jones source calibration and consideration of solar glint. Due to Jim’s attention to detail and the length of time over which he accumulated material, the long lists he provided here may be viewed as comprehensive, if not current by today’s standards.

The level of discussion of the material is suitable for a class taught to advanced undergraduate students or graduate students. The book will also be useful to the many professionals currently practicing in fields in which radiometry plays a part: optical engineering, electro-optical engineering, imagery analysis, and many others.

In 2006, Jim Palmer was told that he was terminally ill, and he asked me to complete this work. I was humbled and honored by the request. I’d met Jim as a graduate student in optical sciences in the late 1980s, and he had served on my thesis committee. My career after graduation had focused on systems engineering and analysis, two areas in which radiometry plays a significant role. For nearly the last ten years of Jim’s life, I’d been able to receive mentoring from the master simply by showing up at Jim’s office door with a question or topic for discussion, but I never anticipated that our discussions would one day come to an end. Upon Jim’s death, I sought to weave his collection of resources and narrative together
with newer material and discussion in a manner I hope will be both informative
to read and valuable to reference. The preface that follows was written by Jim
before he died and has been left as he wrote it.

I am grateful for the assistance of many. First is William L. Wolfe, Jim’s
professor and mentor, who offered helpful comments on each chapter and
adapted Chapter 6 on radiometric instrumentation. Others for whose help I am
grateful, all from or associated with the University of Arizona College of Optical
Sciences, are Bob Schowengerdt, who contributed the narrative on film; Anurag
Gupta of Optical Research Associates, Tucson, Arizona, who adapted the
appendix material; and L. Stephen Bell, Jim’s close friend and colleague, who
revised the signal processing discussion that appears in that section and provided
a complete bibliography on the subject. A special note of thanks goes to Eustace
Derenskiak, who provided office space for me, helpful discussions, and hearty
doses of encouragement. I also wish to thank John Reagan, Kurt Thome (NASA
Goddard Spaceflight Center, Greenbelt, Maryland), Mike Nofziger, and Arvind
Marathay for review, discussion, and helpful insights. In addition, I am grateful
for the assistance of Anne Palmer, Jim’s beloved sister, and University of
Arizona College of Optical Sciences staff members Trish Pettijohn and Ashley
Bidegain. Gwen Weerts and Tim Lamkins of SPIE Press have my gratitude for
the special assistance they provided to this project. I also gratefully acknowledge
Philip N. Slater, my professor in optical sciences, who selected me as a graduate
student and trained me in remote sensing and absolute radiometric calibration
from 1987 to 1989, and Michael W. Munn, formerly Chief Scientist at Lockheed
Martin Corporation, who instilled the value of a systems perspective in the
approach to technical problems.

Finally, I am grateful to my family for providing financial support; to Ralph
Gonzales, Arizona Department of Transportation, and Sylvia Rogers Gibbons for
providing professional contacts; and my friends at Calvary Chapel, Tucson,
Arizona, whose donations and prayers sustained me as I worked to complete this
book.

Barbara G. Grant
Cupertino, California
October 2009
Preface

This volume is the result of nearly twenty years of frustration in locating suitable material for teaching the subject of radiometry and its allied arts. This is not to say that there is not a lot of good stuff out there—it’s just not all in one place, consistent in usage of units, and applicable as both a teaching tool and as a reference. I intend this book to be all things to all people interested in radiometry. The material comes from teaching both undergraduate and graduate-level courses at the Optical Sciences Center of the University of Arizona, and from courses developed for SPIE and for industrial clients. I have unabashedly borrowed the tenor of the title from the superb text *The Art of Electronics* by Paul Horowitz in the hope that this volume will be as useful to the inquisitive reader.

I gratefully acknowledge the contributions of my mentor, William L. Wolfe, Jr., and the hundreds of students whose constant criticism and occasional faint praise have helped immeasurably.

This book is dedicated to the memory of my mother, Candace W. Palmer (1904–1996) and my father, James A. Palmer (1905–1990). She was all one could wish for in a Mom, and he showed me the path to engineering.

James M. Palmer
1937–2007