Bibliography

Q Switching

Bibliography (cont.)

Gain Switching

Bibliography (cont.)

Mode Locking

Bibliography (cont.)

Bibliography (cont.)

Bibliography (cont.)

Bibliography (cont.)

Amplification of Ultrashort Pulses

Bibliography (cont.)

Pulse Characterization

FROG Tutorial given by the group of Rick Trebino at the Georgia Institute of Technology, available at http://www.physics.gatech.edu/gcwo/Tutorial/tutorial.html

See also R. Paschotta, *Encyclopedia of Laser Physics and Technology*, which covers many topics of this Field Guide. The online version is freely usable by the public at http://www.rp-photonics.com/encyclopedia.html. The print version is available via Wiley-VCH, Germany.
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute phase</td>
<td>99</td>
</tr>
<tr>
<td>absorber recovery</td>
<td>51</td>
</tr>
<tr>
<td>active Q switching</td>
<td>11</td>
</tr>
<tr>
<td>actively mode-locked lasers</td>
<td>34</td>
</tr>
<tr>
<td>actively Q-switched lasers</td>
<td>22</td>
</tr>
<tr>
<td>additive-pulse mode locking</td>
<td>63</td>
</tr>
<tr>
<td>amplifier chains</td>
<td>85</td>
</tr>
<tr>
<td>artificial saturable absorbers</td>
<td>54</td>
</tr>
<tr>
<td>bandwidth</td>
<td>4</td>
</tr>
<tr>
<td>bandwidth-limited</td>
<td>5</td>
</tr>
<tr>
<td>carrier–envelope offset</td>
<td>7, 99</td>
</tr>
<tr>
<td>cavity dumping</td>
<td>29, 83</td>
</tr>
<tr>
<td>CEO frequency</td>
<td>7</td>
</tr>
<tr>
<td>CEO phase</td>
<td>99</td>
</tr>
<tr>
<td>chirped-pulse amplification</td>
<td>89</td>
</tr>
<tr>
<td>chirped-pulse optical parametric amplification</td>
<td>89</td>
</tr>
<tr>
<td>chromatic dispersion</td>
<td>39</td>
</tr>
<tr>
<td>continuous-wave mode locking</td>
<td>57</td>
</tr>
<tr>
<td>diffraction gratings</td>
<td>43</td>
</tr>
<tr>
<td>dispersion compensation</td>
<td>42</td>
</tr>
<tr>
<td>dispersive fibers</td>
<td>43</td>
</tr>
<tr>
<td>down-chirped pulse</td>
<td>3</td>
</tr>
<tr>
<td>dynamical behavior of a laser</td>
<td>12</td>
</tr>
<tr>
<td>external-cavity diode lasers</td>
<td>78</td>
</tr>
<tr>
<td>fast absorbers</td>
<td>37</td>
</tr>
<tr>
<td>fiber lasers</td>
<td>27</td>
</tr>
<tr>
<td>field envelope function</td>
<td>3</td>
</tr>
<tr>
<td>figure-eight fiber lasers</td>
<td>72</td>
</tr>
<tr>
<td>Fourier spectrum</td>
<td>4</td>
</tr>
<tr>
<td>frequency comb</td>
<td>6</td>
</tr>
<tr>
<td>frequency-resolved optical gating (FROG)</td>
<td>97</td>
</tr>
<tr>
<td>FROG trace</td>
<td>97</td>
</tr>
<tr>
<td>gain switching</td>
<td>30</td>
</tr>
<tr>
<td>giant pulses</td>
<td>10</td>
</tr>
<tr>
<td>Gires–Tournois interferometers (GTIs)</td>
<td>43</td>
</tr>
<tr>
<td>group delay</td>
<td>39</td>
</tr>
<tr>
<td>group delay dispersion (GDD)</td>
<td>39</td>
</tr>
<tr>
<td>hard aperture mode locking</td>
<td>64</td>
</tr>
<tr>
<td>harmonic mode locking</td>
<td>59</td>
</tr>
<tr>
<td>higher-order solitons</td>
<td>47</td>
</tr>
<tr>
<td>injection seeding</td>
<td>28</td>
</tr>
<tr>
<td>instabilities</td>
<td>28</td>
</tr>
<tr>
<td>instantaneous frequency</td>
<td>3</td>
</tr>
<tr>
<td>intensity</td>
<td></td>
</tr>
<tr>
<td>autocorrelators</td>
<td>94</td>
</tr>
<tr>
<td>interferometric</td>
<td></td>
</tr>
<tr>
<td>autocorrelators</td>
<td>95</td>
</tr>
</tbody>
</table>
Kelly sidebands, 73
Kerr effect, 44
Kerr lens mode locking (KLM), 64
methods for generating optical pulses, 9
microchip lasers, 26
mode beating, 23
mode locking, 33
modulation depth, 20, 21, 50
monolithic diode lasers, 78
nonlinear amplifying fiber loop, 72
nonlinear fiber loop mirrors, 72
nonlinear index, 44
nonlinear polarization rotation, 71
nonsaturable losses, 21, 50
optical autocorrelators, 94
optical parametric amplifiers (OPA), 91
optical power, 2
output powers, 61
parabolic pulses, 75
passive Q switching, 11
passively mode-locked lasers, 36
passively Q-switched lasers, 18, 22
peak power, 2
phase detector method, 101
prism pairs, 42
pulse buildup time, 16
pulse characterization, 92
pulse dropout, 59
pulse duration, 2, 16, 33, 61
pulse energy, 3, 15, 33, 93
pulse repetition rate, 33, 61
pulse shape, 2
pulse trains, 6
Q switching, 32
Q-switched mode locking, 56
Q-switching instabilities, 56, 81
quasi-continuous-wave operation, 32
recovery time, 21
regenerative amplification, 83
regenerative amplifiers, 87
repetition rate, 17
saturation energy, 21, 51
saturation fluence, 51
self-phase modulation (SPM), 45
self-similar pulse evolution, 75
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>semiconductor ring lasers</td>
<td>78</td>
</tr>
<tr>
<td>semiconductor saturable</td>
<td></td>
</tr>
<tr>
<td>absorber mirrors (SESAM)</td>
<td>50</td>
</tr>
<tr>
<td>similariton lasers</td>
<td>75</td>
</tr>
<tr>
<td>slow absorbers</td>
<td>38</td>
</tr>
<tr>
<td>soft aperture mode locking</td>
<td>64</td>
</tr>
<tr>
<td>solid-state bulk lasers</td>
<td>24</td>
</tr>
<tr>
<td>soliton fiber lasers</td>
<td>71</td>
</tr>
<tr>
<td>soliton mode locking</td>
<td>49</td>
</tr>
<tr>
<td>soliton period</td>
<td>47</td>
</tr>
<tr>
<td>soliton pulses</td>
<td>46</td>
</tr>
<tr>
<td>spectral intensity</td>
<td>4</td>
</tr>
<tr>
<td>spectral phase</td>
<td>4</td>
</tr>
<tr>
<td>spectral phase interferometry</td>
<td></td>
</tr>
<tr>
<td>reconstruction (SPIDER)</td>
<td>98</td>
</tr>
<tr>
<td>spectral width</td>
<td>4</td>
</tr>
<tr>
<td>stretched-pulse fiber lasers</td>
<td>74</td>
</tr>
<tr>
<td>thin-film multilayer mirrors</td>
<td>43</td>
</tr>
<tr>
<td>third-order dispersion (TOD)</td>
<td>39</td>
</tr>
<tr>
<td>time domain</td>
<td>2</td>
</tr>
<tr>
<td>time–bandwidth product</td>
<td>5</td>
</tr>
<tr>
<td>timing jitter</td>
<td>100</td>
</tr>
<tr>
<td>transform-limited</td>
<td>5</td>
</tr>
<tr>
<td>ultrashort pulses</td>
<td>2</td>
</tr>
<tr>
<td>up-chirped</td>
<td>3</td>
</tr>
<tr>
<td>VECSEL</td>
<td>79</td>
</tr>
</tbody>
</table>
Rüdiger Paschotta is an expert in lasers and amplifiers, nonlinear optics, fiber technology, laser pulses, and noise in optics. He started his scientific career in 1994 with a PhD thesis in the field of quantum optics, and thereafter focused on applied research, covering a wide range of laser-related topics. He is the author or coauthor of over 100 scientific journal articles, over 120 international conference presentations, and several book chapters. He is also the author of the well-known Encyclopedia of Laser Physics and Technology (p. 116). His successful academic career includes his habilitation at ETH Zürich and his attainment of the Fresnel Prize of the European Physical Society in 2002.

In 2004, Dr. Paschotta started RP Photonics Consulting GmbH, a technical consulting company based in Zürich, Switzerland (http://www.rp-photonics.com). He now serves companies in the photonics industry worldwide, working out feasibility studies and designs for lasers and other photonic devices, identifying and solving technical problems, finding suitable laser sources for specific applications, and performing staff training courses on specialized subjects. His work combines his extensive physics knowledge, his experience with an inventory of numerical modeling tools, a practically oriented mind, and a passion for constructive, interactive teamwork.