FUNDAMENTALS OF POLARIMETRIC REMOTE SENSING
Tutorial Texts Series

- Fundamentals of Polarimetric Remote Sensing, John Schott, Vol. TT81
- Fundamentals of Photonics, Chandra Roychoudhuri, Vol. TT79
- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Bioluminescence for Food and Environmental Microbiological Safety, Lubov Y. Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare, Sergio R. Restaino, Vol. TT73
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69
- Artificial Neural Networks: An Introduction, Kevin L. Pridy and Paul E. Keller, Vol. TT68
- Basics of Code Division Multiple Access (CDMA), Raghuviree Rao and Sohail Dianat, Vol. TT67
- Optical Imaging in Projection Microlithography, Alfred Kwok-Kit Wong, Vol. TT66
- Metrics for High-Quality Specular Surfaces, Lionel R. Baker, Vol. TT65
- Field Mathematics for Electromagnetics, Photonics, and Materials Science, Bernard Maxum, Vol. TT64
- High-Fidelity Medical Imaging Displays, Aldo Badano, Michael J. Flynn, and Jerzy Kanicki, Vol. TT63
- Thin-Film Design: Modulated Thickness and Other Stopband Design Methods, Bruce Perilloux, Vol. TT57
- Optische Grundlagen für Infrarotsysteme, Max J. Riedl, Vol. TT56
- An Engineering Introduction to Biotechnology, J. Patrick Fitch, Vol. TT55
- Image Performance in CRT Displays, Kenneth Compton, Vol. TT54
- Modulation Transfer Function in Optical and Electro-Optical Systems, Glenn D. Boreman, Vol. TT52
- Fundamentals of Antennas, Christos G. Christodoulou and Parveen Wahid, Vol. TT50
- Basics of Spectroscopy, David W. Ball, Vol. TT49
- Resolution Enhancement Techniques in Optical Lithography, Alfred Kwok-Kit Wong, Vol. TT47
- Copper Interconnect Technology, Christoph Steinbrüchel and Barry L. Chin, Vol. TT46
- Fundamentals of Contamination Control, Alan C. Tribble, Vol. TT44
- Evolutionary Computation: Principles and Practice for Signal Processing, David Fogel, Vol. TT43
- Infrared Optics and Zoom Lenses, Allen Mann, Vol. TT42
- Introduction to Adaptive Optics, Robert K. Tyson, Vol. TT41
- Fractal and Wavelet Image Compression Techniques, Stephen Welstead, Vol. TT40
FUNDAMENTALS
OF POLARIMETRIC
REMOTE SENSING

JOHN R. SCHOTT

Tutorial Texts in Optical Engineering
Volume TT81

SPIE PRESS
Bellingham, Washington USA
Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to more than 80 titles covering many diverse fields of science and engineering. The initial idea for the series was to make material presented in SPIE short courses available to those who could not attend and to provide a reference text for those who could. Thus, many of the texts in this series are generated by augmenting course notes with descriptive text that further illuminates the subject. In this way, the TT becomes an excellent stand-alone reference that finds a much wider audience than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material covered since 1989. They no longer necessarily stem from short courses; rather, they are often generated by experts in the field. They are popular because they provide a ready reference to those wishing to learn about emerging technologies or the latest information within their field. The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, fiber optics, and laser technologies. Authors contributing to the TT series are instructed to provide introductory material so that those new to the field may use the book as a starting point to get a basic grasp of the material. It is hoped that some readers may develop sufficient interest to take a short course by the author or pursue further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs and textbooks in the way in which the material is presented. In keeping with the tutorial nature of the series, there is an emphasis on the use of graphical and illustrative material to better elucidate basic and advanced concepts. There is also heavy use of tabular reference data and numerous examples to further explain the concepts presented. The publishing time for the books is kept to a minimum so that the books will be as timely and up-to-date as possible. Furthermore, these introductory books are competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

James A. Harrington
Rutgers University
Dedicated to the undergraduates who have forced me to look at old problems in new ways, the practicing scientists and engineers who have kept me grounded, and the graduate students who have opened new doors for me. You have enriched my life. I hope I have, in some small way, returned the favor.
Contents

Preface xiii
Acknowledgments xv
List of Contributors xvii

1 Introduction 1
1.1 Scope ..1
1.2 Perspective on the Field ...2
1.3 Structure of the Book ..4
References ...5

2 Review of Radiometry 7
2.1 Radiometric Terms ..7
 2.1.1 Definition of terms ..7
 2.1.2 Blackbody radiators ...17
References..20

3 The Wave Nature of EM Energy and an Introduction of the
 Polarization Ellipse 21
3.1 Wave Nature of EM Energy ..21
3.2 The Polarization Ellipse ...27
3.3 Special (Degenerate) Forms of the Polarization Ellipse31
 3.3.1 Linear polarization ...31
 3.3.2 Unrotated ellipse ..31
References..32

4 Representation of the Polarimetric State of a Beam 33
4.1 The Stokes Parameters ...33
4.2 Stokes Vector Representation ..34
4.3 Methods to Characterize and Interpret Stokes Vectors38
4.4 Parameters of the Polarization Ellipse and the Poincaré Sphere .44
Table of Contents

References ... 49

5 Polarimetric Interactions: Reflection and Transmission 51

5.1 Fresnel Specular Reflection ... 51
5.2 Polarized Transmission and Polarizing Materials .. 54
5.3 The Mueller Matrix: Polarimetric Energy-Matter Interactions 57
References ... 61

6 Polarimetric Bidirectional Reflectance Distribution Functions (pBRDF) 63

6.1 Bidirectional Reflectance Distribution Functions ... 63
 6.1.1 Ways to characterize reflectance ... 63
6.2 Polarimetric Bidirectional Reflectance Distribution Functions (pBRDF) .. 67
 6.2.1 Specular reflectors ... 67
 6.2.2 Optical scatter from surfaces .. 71
6.3 Reflectance Variability or Texture .. 76
6.4 BRDF Measurement ... 77
 6.4.1 Conventional laboratory measurements ... 78
 6.4.2 Camera-based measurements ... 79
 6.4.3 Field measurements .. 82
 6.4.3.1 Overhead BRDF measurement ... 84
 6.4.4 Polarimetric BRDF measurement .. 85
6.5 BRDF Models ... 88
 6.5.1 Torrance-Sparrow model .. 88
 6.5.2 Maxwell-Beard model .. 89
 6.5.3 Polarimetric BRDF models .. 94
 6.5.3.1 Target material pBRDF models .. 94
 6.5.3.2 Background material pBRDF models ... 95
6.6 Summary of pBRDF Concepts ... 96
References ... 101

7 Polarized Form of the Governing Equation Including Atmospheric Scattering Terms 107

7.1 Governing Polarized Radiance Equation ... 107
 7.1.1. Scalar representation of the governing equation 107
 7.1.2 Governing equation—Stokes representation .. 109
Table of Contents

7.2 Atmospheric Scattering and the Polarized State of the Terms in the Governing Equation ... 112
 7.2.1 Characterization of the polarized state of the incident radiative field .. 113
 7.2.1.1 Rayleigh scatter ... 114
 7.2.1.2 Aerosol and nonselective scatter 116
 7.2.2 Estimation of the atmospheric terms in the polarized governing equation .. 116
 7.2.2.1 Use of radiative transfer codes to estimate polarimetric atmospheric terms 117
 7.2.2.2 Visualization of sky polarization and validation of the DIRSIG implementation of MODTRAN-P122

7.3 Predicting the Polarimetric Radiance at the Sensor 128

References..132

Color Plate Section

8 Sensors for Measuring the Polarized State of a Beam 135
 8.1 Sensing of Polarization Contrast...135
 8.2 Generalized Stokes Vector Polarimeters138
 8.3 Polarimetric Imaging Sensors ...144
 8.4 Issues Related to Polarimetric Imaging Sensors 149

References..151

9 Processing and Display Algorithms 153
 9.1 Display of Polarimetric Images ..153
 9.2 Data Processing and Analysis ..160

References..162

10 Measurements and Modeling of the pBRDF of Materials 165
 10.1 Polarimetric BRDF Measurement Approach165
 10.1.1 Measurement approach .. 165
 10.1.2 BRDF probability distribution (BRVF) calculation169
 10.1.3 Imaging system description and characterization 170
 10.1.4 Example measurement results172
 10.2 Incorporation of pBRDF Models in Synthetic Scene Generation Models ... 175

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 19 Jun 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
10.2.2 Surface radiometry solvers ... 176
10.2.3 Supported polarimetric BRDF models .. 177
 10.2.3.1 Generalized microfacet-based target model 177
 10.2.3.2 Polarized Roujean background model 178
 10.2.3.3 Priest-Germer BRDF ... 179
 10.2.3.4 Torrance-Sparrow BRDF ... 179
 10.2.3.5 Stokes vector orientation considerations 179
10.3 End-to-End Passive Polarimetric Scene Simulation 180
 10.3.1 Polarized atmosphere ... 180
 10.3.2 Polarized manmade sources ... 181
 10.3.3 Surface leaving radiance ... 181
 10.3.4 Platform and sensor modeling 182
 10.3.5 Simulation examples ... 182
References .. 187

11 Longwave Infrared pBRDF Principles ... 191
 11.1 Background on Polarimetric Remote Sensing in the Thermal
 Infrared .. 191
 11.2 Applications of Polarimetric Infrared Imaging 195
 11.3 Polarized BRDF and Emissivity Model 199
 11.3.1 Polarized specular reflection component of the pBRDF
 model .. 200
 11.3.2 Unpolarized reflection component 202
 11.4 Polarized Emissivity .. 202
References .. 208

12 LWIR pBRDF Measurements and Modeling 211
 12.1 Measurement of Polarized Emissivity and pBRDF Estimation 211
 12.1.1 Measurement approach ... 211
 12.1.2 Image data collection ... 217
 12.1.3 Emissivity model parameter fitting 222
 12.2 Thermal Infrared Polarimetric Scene Simulation 227
 12.3 Closing Thoughts ... 239
References .. 239

Index .. 241
Preface

This book was motivated by a short course on polarimetric remote sensing that I taught for industry about a year ago. I had supervised three doctoral students on thesis topics involving this subject and when I was asked to teach the course I thought it would be relatively easy to pull the course material together. In the months leading up to the course I discovered two things. First, as is so often the case, in preparing to teach the topic I found I knew far less than I thought I knew and dramatically less than I needed to know to teach a course. Second, I found that while there is a good treatment of polarization principles in the electro-optics literature, the treatment from the remote sensing perspective was quite scarce. In particular, while there were many journal and conference papers on specific topics, there was nowhere to send a student to get a good start on the fundamentals that they would need to prepare to delve into the more specific topics in the journals. So, to make a long story short, with considerable effort, I pulled together a variety of material and taught the course.

Afterwards, I realized I had the foundation for an introductory book that might save others getting started in this field from a similar effort. As a result, I spent the last year fleshing out the initial material, with a good deal of help from dedicated colleagues. The final book focuses on passive electro-optical polarimetric remote sensing in the visible through the thermal infrared (0.4–14 μm).

Polarimetric remote sensing is a relatively new field. It has champions who tout that polarimetric measurements are uncorrelated with traditional measurements of the magnitude and spectral content of the electromagnetic signal and should therefore add significant information. Likewise, it has detractors who point out that often the sought for contrasts between targets and backgrounds or between phenomena are not observed or are not as dramatic as they might be using some other sensing approach. I believe the jury is still out regarding how much utility we will eventually find in passive polarimetric remote sensing and what its role should be relative to other sensing approaches (e.g., multispectral). One of the main reasons for this is that polarimetric signatures are a rather involved function of source, target, and sensor geometry. Potential users must develop a more thorough knowledge of the relevant source-target-propagation-sensor physics to determine the true utility of this modality for their application. Once we understand and apply the relevant physics, we can develop tools to make it easier for
other users to guide collection, processing, and analysis to improve signature contrast and determine the true utility of polarimetric remote sensing. It is for these students of the relevant physics (myself included) that I have written this book. I hope you find it a useful starting point for exploring this largely unexplored field.

As I listen today to the waves crashing on the beach, drowned out periodically by the thunder rumbling across the sky and watch the bay lit up by lightning, I can’t help but be reminded how rich and complex nature is and how rewarding its study can be.

John R. Schott, Ph.D.
Wyldewood Beach
Port Colborne, Ontario
February 2009
Acknowledgments

Let me begin by introducing and thanking the coauthors. They are nearly all current or former students and several are colleagues at the Digital Imaging and Remote Sensing (DIRS) Laboratory at RIT. Lieutenant Colonel James R. Shell II, Ph.D. (Chapters 6, 7, and 10) and Dr. Michael G. Gartley (Chapters 10, 11, and 12) did their Ph.D. work on polarimetric scene simulation in the reflective and thermal infrared regions, respectively. I drew on their work and expertise not only in the chapters cited but throughout the text. Chabitha Devaraj is a current student and David Pogorzala, Dr. David Messinger, and Dr. Adam Goodenough are members of my research staff. They helped in particular with some of the scene simulations in Chapter 7. Finally, Scott D. Brown (Chapters 7 and 10) has been the engine behind the DIRSIG software for many years, as well as friend and colleague. He contributed to essentially all the DIRSIG results.

I also want to thank my graphics and administrative team who made this book a reality in a short time. Sharah Blankenship provided artistic guidance, graphics, and layout for the entire text, as well as the visuals for the various courses I’ve taught based on these materials. Cindy Schultz provided typing, editing coordination, and overall administrative support to all of us, as well as to our reviewers.

In an effort to avoid propagating blunders in this field that we are all studying, I asked a number of colleagues to review chapters, or in a few cases, the entire book, to catch errors and recommend improvements. Many thanks to Dr. Emmett Ientilucci and Dr. David Messinger of DIRS, Christopher Tome at ITT, Dr. Scott Tyo at the University of Arizona, Dr. Bradley Henderson at Los Alamos National Laboratory, and Dr. Thomas Caudill and Matthew Fetrow at AFRL. I am also grateful for editorial help from Dara Burrows at SPIE.

Finally, I’d like to thank the Faculty and Staff of the Digital Imaging and Remote Sensing (DIRS) Laboratory at the Rochester Institute of Technology who have supported me so effectively and who generously allowed me to pursue my writing muse.
List of Contributors

Scott D. Brown
Rochester Institute of Technology, USA

Chabitha Devaraj
Rochester Institute of Technology, USA

Adam Goodenough
Rochester Institute of Technology, USA

Michael G. Gartley
Rochester Institute of Technology, USA

David W. Messinger
Rochester Institute of Technology, USA

David Pogorzala
Rochester Institute of Technology, USA

James R. Shell II
US Air Force, USA