Index

35-mm film, 239
3-D, 235
 high-definition television, 236
 movie, 236
 viewing, 236

Abbe
 Ernst, 10
 v number, 174
aberration
 chromatic, 105, 115
 comatic, 108
 curves, 117, 150, 200, 215
 monochromatic, 113
 off axis, 105
 on-axis, 105
 spherical, 105, 128
accommodation, 191
achromat, 96
achromatic
 cemented doublet, 159
 doublet, 113
acrylic, 185
actual magnification numbers, 148
aerial image modulation (AIM), 91, 193
afocal system, 91
air-spaced doublet, 124, 128, 129, 213
air-to-glass interface, 179
Airy disk, 41, 87, 120, 158, 200, 212, 215, 220
Alhazen, 6
alignment telescope, 167
aluminum coating, 135
Amici, Giovanni, 10
angle solve, 73
angular resolution limit, 159
antireflection coating, 179
 broadband, 182, 183
 diamond, 182
 single-layer, 183
 multilayer, 180
aperture, 41
 stop, 49, 153
apochromat, 96
apochromatic
 lens design, 212
 doublet, 217
aqueous, 189
Aristotle, 5
arthroscope, 169
aspheric
 infrared lenses, 139
 surfaces, 136, 138, 182–183
astigmatism, 108, 110, 112, 128, 192, 200, 202, 223
astrophotography, 162
athermalization, 185
autocollimator, 167
axial color, 113, 124, 128
axial travel per diopter, 155
Bacon, Roger, 6
baffles, 202
barrel shape, 112
Bausch and Lomb, 14
binoculars, 163
 Porro prism, 140, 164
BK7 glass, 72, 175
blur circle, 103
borescope, 169
 flexible, 172
Bradley, James, 11
brightness, 259
bubbles, 177

camcorder, 241
 digital, 241
camera obscura, 6
cataracts, 192
cc (conic constant), 266
CD (compact disk), 236
CD-ROM (compact disk, read-only memory), 241
cemented doublet, 124
Chance-Pilkington glass company, 14
clear aperture, 134
Chevalier, Charles, 10
chief ray, 19, 54, 117
"chip in the tip", 171
chromatic aberration, 40, 96
CinemaScope, 18, 236
Cinerama, 18, 236
circle, 266
clear aperture, 134
Cleartran, 183
coefficient of linear expansion \(\alpha \), 177–178
collimated, 33
 beam, 210
collimator, 166
color
 axial, 128
 lateral, 117, 200–202
color (continued)
 primary, 114
 secondary, 114
coma, 107, 128
compact disk, 236
compound magnifier, 155
concave aspheric shape, 227
conic constant, 226, 227, 266
contrast, 150
convergence, 235, 236
Cooke triplet, 13, 220
cornea, 189
Corning, 178
cosmetic finish, 130
critical angle, 143
crown glass, 124, 175

Daguerre, Louis, 10
dark ring, 45, 120
derotation prism, 144
design
 documentation, 217
 evaluation, 222
detail lens drawing, 128, 135
deviating prism, 142
diamond
 coating, 182
 point machining, 138
diffraction, 40
 modulation transfer function, 217
 analysis, 208
diffraction limited, 132, 196
 blur spot, 158
 performance, 200
digital
camera, 157, 162, 241
 photography, 239
 recording system, 237
 video, 239
 video disk (DVD), 237
 player, 241
diopters, 52
dispersion, 39, 40, 174
distortion, 202, 223
curve, 201
negative, 112
positive, 112
Dolland, John, 10
double-Gauss lens, 220
doublet, 123
 air-spaced, 124, 128, 129
cemented, 124
dry nitrogen, 69
durability, 136
DVD (digital video disk), 237
 player, 241
Earth’s atmosphere, 181
Eastern Optical Co., 16
Eastman Kodak, 14
Edmund
 Scientific, 91
 Optics Inc, 97
effective focal length (EFL), 47
electromagnetic spectrum, 21, 44
electronic imaging, 239
ellipse, 266
encircled fractional energy, 119
endoscope, 169, 236
ensquared energy diagram analysis, 223
ensquared fractional energy, 119
entrance pupil, 49, 202, 220, 221
equi-convex, 71
Eratosthenes, 6
erecting eyepiece, 166
Euclid, 5
exit pupil, 49, 153, 158, 162, 202
exposure factors, 261
exposure value (E_v) system, 259
eye
 convergence, 232
 relief, 162, 165, 202
eyelens, 189
eyepiece, 124, 152

f/#, 56, 60, 156, 259, 261
farsightedness, 192
fiber optics, 170
 bundle, 172
field
 curvature, 108, 150
 curves, 200
 flattener, 112, 221
 lens, 223
 sag curves, 112
 stop, 50, 158, 165, 202
 size, 155
field of view, 47, 60, 153, 156, 158, 162, 163, 191
 observed, 150
 vertical, 165
final design optimization, 222
finest resolvable pattern, 147
Fizeau, Armand, 11
flint glass, 124, 175
focal system, 91
focus, 157, 235
 adjustment, 197
 range, 155
 shift, 139, 144
 travel, 198
Foucault, Jean Léon, 13
fovea, 191
fractional energy, 119
Fraunhofer, Joseph, 9
free aperture, 130
frequency, 24
front surface mirror, 136
fused
 quartz, 178
 silica, 173, 178
Galilei, Galileo, 8
Gaussian thin-lens formulas, 63
germanium, 182
Giambattista della Porto, 7
glare stops, 202
glass
 BK7, 72, 175
crown, 124, 175
flint, 124, 175
SF1, 175
 identification number, 174
 map, 174
gold coating, 136
Grimaldi, Francesco, 9

Hall, Chester Moor, 9
Hastings cemented triplet, 150
head prism, 170
height solve, 73
Herschel, Sir William, 11
Hindle sphere, 227
homogeneity, 176
Hooke, Robert, 10
HOYA, 15
Hubble Space Telescope, 19
human eye, 189
Huygens, Christiaan, 8
hyperbola, 266
hyperboloid, 226
hyperfocal distance, 66
hyperopia, 192

illuminance, 263
image
 brightness, 60
derotation, 140
evaluation, 205
plane, 56
quality, 215, 220
reversal, 132
size, 47
imager lens, 220
implanted artificial lens, 192
index of refraction, 174
infrared
 energy, 181
 materials, 188
 systems, 136, 173, 181

injection molding, 186
interpupillary distance, 163
iris, 189
diaphragm, 49
ISO rating, 261

Janssen, Hans, 10
Janssen, Johannes, 7
Janssen, Zacharias, 10
jig alignment telescope, 167

k (conic constant), 266
Kepler, Johannes, 8
Kollmorgen
 Optical Company, 17
 Frederick, 15, 16

Lambda Research Corp., 72, 80
laparoscope, 169
laser range finder, 26, 169
lateral color, 117, 200–202
law of
 reflection, 30
 refraction, 9, 37
Lee, H. W., 13
lens, 123
 aberrations, 103
 apochromatic, 212
data, 209
design, 15, 205
double-Gauss, 220
equi-convex, 71
field flattener, 112
Hastings cemented triplet, 150
libraries, 89
null, 226, 227
Petzval, 53, 82, 221
plano-convex, 71
thin, 47
simple, 123
 mock-up stage, 70
specifications, 220
lens (continued)
speed, 47
light ray concept, 30
light rays, 28
light sources, 28
Lincoln Memorial, 150
linear expansion, 177
Lister, Joseph Jackson, 10
loupe, 147
low-expansion materials, 178

magnetic tapes, 237
magnification, 58, 93
value M, 148
magnifier, 148
magnifying glass, 147
marginal ray, 49, 54
Maurolico, Francesco, 6
maximum visual resolution, 161
mechanical length, 144
melt data, 176
Michelson, Albert A., 13
micromachined mirror, 137
micromachining, 138
microscope, 89, 152, 155
magnification, 155
MIL Handbook 141, 144, 202
mirror, 130
 concave, 33
 convex, 33
 curved, 136
 flat, 30, 130
 front surface, 136
 Mangin, 137
 micromachined, 137
 replicated, 137
 spherical, 226, 227
mirror substrate, 131
modern PC system, 75
modified symmetrical form, 202
modulation, 150
modulation transfer function (MTF), 84, 103, 150, 159
data, 128
monocular, 124, 164
moon, 161
 illusion, 232
mounting a mirror, 135
multilayer coatings, 180
multispectral-grade zinc sulfide, 183
myopia, 192

near-infrared spectral bandwidth, 210
nearsightedness, 192
negative lens element, 39
Newton, Isaac, 9
Newtonian
equation, 198
thin-lens formula, 63
noninvasive surgical procedures, 236
null lens, 226
numerical aperture, 56, 156

oblate spheroid, 227
obscuration, 41
observed field of view, 150
Ohara, 15
optic nerve, 191
optical
 axis, 49
 coatings, 15, 173
 designer, 2, 77
 glass, 173
 illusion, 231
 instrument, 147
material
 acrylic, 185
 fused quartz, 178
 fused silica, 173
 germanium, 182
 glass, 173
 plastic, 173, 185, 188
 polystyrene, 185
 Pyrex, 178
 silicon, 183
optical (continued)
micrometer, 167
path difference, 196
error, 227
range finder, 142
schematic, 209, 218, 225
sight level, 166
spectrum, 44
tooling instruments, 166
Optical Design for Visual Systems,
153, 202
optimization, 207
procedure, 200
stage, 213
OSLO (Optics Software for Layout
and Optimization), 80, 205
OSLO-EDU, 72, 81, 205
overall length, 144
Owens CERVIT, 178

parabola, 265–266
paraboloid, 226
paraxial solves, 213
Pechan derotation prism, 144
performance evaluation, 215
periscope, 18
"golf course", 169
submarine, 115, 169, 171
perspective, 232
Petzval,
curvature, 108, 112
Joseph, 10, 15
lens, 53, 82, 221
photography, 239
still, 239
photometry, 259
pincushion effect, 112
plane
image, 56
sagittal, 51
tangential, 51
plano-convex, 71
plastic, 173
Plato, 5
point-spread function, 88, 119
polymethylmethacrylate, 185
polystyrene, 185
Ponzo illusion, 231
Porro prism binoculars, 140, 164
positive lens element, 37
postpolishing, 139
precision collimator, 209
primary color, 114
prism, 40, 139
Amici, 140
delta, 140
derotation, 144
deviating, 142
dove, 140
Pechan, 140
derotation, 144
penta, 140
Porro, 140
right-angle, 139
roof Pechan, 163, 200–202
producing, 215
projection television, 237
front, 239
rear, 239
pseudostereo, 236
Ptolemy, 6
pupil
entrance, 49, 202, 220, 221
exit, 49, 153, 158, 162, 202
Pyramid of Cheops, 5
Pyrex, 178
radial energy distribution, 87, 103,
159
rainbow, 242
ray
chief, 49, 54
marginal, 49, 54
ray-trace analysis, 222
reference coordinate system, 51
reflecting coating, 135
 aluminum, 135
gold, 136
silver, 135
reflection,
law of, 30
refraction, 35
 chief-ray, 117
 index of, 35
 for water, 35
 law of, 9, 37
relative illumination, 169
relay lens, 164
replication process, 137
resolution, 192
reticle, 165
retina, 191
riflescope, 164
RKE® eyepiece, 97
Roemer, Olaf, 11
roof
 angle, 132
 mirror, 132
 Pechan prism, 163, 200–202
 prism, 132
Rudolph, Paul, 10, 13

sag, 265
sagittal plane, 51
scale focal length, 82
scene brightness, 261
Schott
 Glass Works, 14
 Optical Glass Company, 174
 Zerodur, 178
Schroeder, 10
scientific notation, 23
scratch/dig, 130
secondary color, 96, 114
seeds, 177
semiapochromat, 96
sensitivity, 259
SF1 glass, 175
shutter speed, 261
silicon, 183
silver coating, 135
simple lens
 mock-up stage, 70
 simple window, 37
Sinclair
 Optics, 80
 Doug, 80
Smakula, Alexander, 15
Snell, Willebrord, 8
Snell’s law, 37
solid model graphic, 84
Soveril, 14
spectral
 bandwidth, 212
 response curve, 212
 weights, 213
spectrum
 optical, 44
 visible, 44
 electromagnetic, 21, 44
speed of light, 24
 in air, 24
spherical
 aberration, 105
 surface, 136
 test mirror, 227
split-crown element, 124
spot diagram, 103, 159
stage micrometer, 157
standard illuminants, 29
stereo
 effect, 164
 image, 172
stereoscope, 235
still photography, 239
Stonehenge, 5
Strehl ratio, 119
striae, 177
Strong, John, 15
styrene, 185
surface
 reflection loss, 179
 sag, 265
surveying, 166
tangential plane, 51
Taylor, H. Dennis, 13, 15
telescope, 152, 158
alignment, 167
design, 206
jig alignment, 167
magnification, 158
terrestrial, 163
television
projection, 237
front, 239
rear, 239
three-dimensional high-definition, 236
test equipment, 229
theodolite, 166
thermal expansion, 178, 215
thin lens, 47
formulas, 61
Newtonian, 63
Gaussian, 63
power, 52
third dimension, 235
high-definition television, 236
movie, 236
viewing, 236
time, 259
Todd AO, 236
tolerance analysis, 130
tolerances, 88
tolerancing process, 218
total
internal reflection, 142
path, 144
transit, 166

total
internal reflection, 142
path, 144
transit, 166

van Leeuwenhoek, 10
VCR (videocassette recorder), 241
video camera, 241
videocassette recorder (VCR), 241
vignetting, 73, 84, 169, 223
visible spectrum, 23, 44
visual
acuity, 192
as a function of field angle, 191
resolution capability, 193
response curve, 152
system, 231
test chart, 193
Vitello, 6
vitreous, 191
von Liebig, Justus, 9
wavefront, 27
curves, 215
tolerance, 196, 202, 210
wavelength, 21, 212
wedge, 142
tolerance, 219
weights, 212
worst-case prediction, 219

X axis, 51

Y axis, 51
Young, Thomas, 11

Z axis, 51
Zeiss Tessar lens, 13
zinc
selenide, 183
sulfide, 183
About the Author

Bruce H. Walker, founder and president of Walker Associates, has been active in the fields of optical engineering and lens design since 1960. He was an optical engineer and lens designer at General Electric from 1960 until 1971. While at GE, he received four patents for specialized lens designs that were used in the medical field. Mr. Walker was with the Electro-Optical Division of Kollmorgen Corporation from 1971 until 1991. He joined Kollmorgen as a senior optical engineer and was promoted to manager of optical engineering in 1981. At Kollmorgen he was a key contributor to all ongoing projects, including military sights, foreign and domestic submarine periscope programs, and the photonics mast, which was developed in the 1980s. Mr. Walker was a member of the editorial advisory board of the Laurin Publishing Company from 1970 until 1999. During those years he contributed more than 30 technical articles to the pages of Photonics (Optical) Spectra, while also making numerous significant contributions to the Photonics Industry Directory. In 1995 Mr. Walker authored the first edition of Optical Engineering Fundamentals. In 2000 he followed with Optical Design for Visual Systems, also available from SPIE as a part of their popular tutorial text series. Since 1991 Mr. Walker has worked as an independent optical design consultant, specializing in providing unique solutions to a variety of optical engineering problems and to the generation of numerous specialized lens designs.