Index

35-mm film, 239
3-D, 235
  high-definition television, 236
  movie, 236
  viewing, 236
Abbe
  Ernst, 10
  \( \nu \) number, 174
aberration
  chromatic, 105, 115
  comatic, 108
  curves, 117, 150, 200, 215
  monochromatic, 113
  off axis, 105
  on-axis, 105
  spherical, 105, 128
accommodation, 191
achromat, 96
achromatic
  cemented doublet, 159
  doublet, 113
acrylic, 185
actual magnification numbers, 148
aerial image modulation (AIM), 91, 193
afocal system, 91
air-spaced doublet, 124, 128, 129, 213
air-to-glass interface, 179
Airy disk, 41, 87, 120, 158, 200, 212, 215, 220
Alhazen, 6
alignment telescope, 167
aluminum coating, 135
Amici, Giovanni, 10
angle solve, 73
angular resolution limit, 159
antireflection coating, 179
broadband, 182, 183
diamond, 182
single-layer, 183
multilayer, 180
aperture, 41
  stop, 49, 153
apochromat, 96
apochromatic
  lens design, 212
doublet, 217
aqueous, 189
Aristotle, 5
arthroscope, 169
aspheric
  infrared lenses, 139
  surfaces, 136, 138, 182–183
astigmatism, 108, 110, 112, 128, 192, 200, 202, 223
astrophotography, 162
athermalization, 185
autocollimator, 167
axial color, 113, 124, 128
axial travel per diopter, 155
Bacon, Roger, 6  
baffles, 202  
barrel shape, 112  
Bausch and Lomb, 14  
binoculars, 163  
Porro prism, 140, 164  
BK7 glass, 72, 175  
blur circle, 103  
borescope, 169  
flexible, 172  
Bradley, James, 11  
brightness, 259  
bubbles, 177  
camcorder, 241  
digital, 241  
camera obscura, 6  
cataracts, 192  
cc (conic constant), 266  
CD (compact disk), 236  
CD-ROM (compact disk, read-only memory), 241  
cemented doublet, 124  
Chance-Pilkington glass company, 14  
change in index with temperature, 177  
Chevalier, Charles, 10  
chief ray, 19, 54, 117  
"chip in the tip", 171  
chromatic aberration, 40, 96  
CinemaScope, 18, 236  
Cinerama, 18, 236  
circle, 266  
clear aperture, 134  
Cleartran, 183  
coefficient of linear expansion $\alpha$, 177–178  
collimated, 33  
beam, 210  
collimator, 166  
color  
   axial, 128  
   lateral, 117, 200–202  
color (continued)  
   primary, 114  
   secondary, 114  
coma, 107, 128  
compact disk, 236  
compound magnifier, 155  
concave aspheric shape, 227  
conic constant, 226, 227, 266  
contrast, 150  
convergence, 235, 236  
Cooke triplet, 13, 220  
cornea, 189  
Corning, 178  
cosmetic finish, 130  
critical angle, 143  
crown glass, 124, 175  
Daguerre, Louis, 10  
dark ring, 45, 120  
derotation prism, 144  
design  
   documentation, 217  
   evaluation, 222  
detail lens drawing, 128, 135  
deviating prism, 142  
diamond  
   coating, 182  
   point machining, 138  
diffraction, 40  
   modulation transfer function, 217  
   analysis, 208  
diffraction limited, 132, 196  
blur spot, 158  
   performance, 200  
digital  
   camera, 157, 162, 241  
   photography, 239  
   recording system, 237  
   video, 239  
   video disk (DVD), 237  
   player, 241  
diopters, 52  
dispersion, 39, 40, 174
distortion, 202, 223
curve, 201
negative, 112
positive, 112
Dolland, John, 10
double-Gauss lens, 220
doublet, 123
  air-spaced, 124, 128, 129
cemented, 124
dry nitrogen, 69
durability, 136
DVD (digital video disk), 237
  player, 241
Earth’s atmosphere, 181
Eastern Optical Co., 16
Eastman Kodak, 14
Edmund
  Scientific, 91
  Optics Inc, 97
effective focal length (EFL), 47
electromagnetic spectrum, 21, 44
electronic imaging, 239
ellipse, 266
circled fractional energy, 119
endoscope, 169, 236
ensquared energy diagram analysis, 223
circled fractional energy, 119
entrance pupil, 49, 202, 220, 221
equi-convex, 71
Eratosthenes, 6
erecting eyepiece, 166
Euclid, 5
exit pupil, 49, 153, 158, 162, 202
exposure factors, 261
exposure value ($E_v$) system, 259
eye
  convergence, 232
  relief, 162, 165, 202
eyelens, 189
eyepiece, 124, 152
f/#, 56, 60, 156, 259, 261
farsightedness, 192
fiber optics, 170
  bundle, 172
field
  curvature, 108, 150
curves, 200
  flattener, 112, 221
  lens, 223
  sag curves, 112
  stop, 50, 158, 165, 202
  size, 155
field of view, 47, 60, 153, 156, 158,
  162, 163, 191
observed, 150
vertical, 165
final design optimization, 222
finest resolvable pattern, 147
Fizeau, Armand, 11
flint glass, 124, 175
focal system, 91
focus, 157, 235
  adjustment, 197
  range, 155
  shift, 139, 144
  travel, 198
Foucault, Jean Léon, 13
fovea, 191
fractional energy, 119
Fraunhofer, Joseph, 9
free aperture, 130
frequency, 24
front surface mirror, 136
fused
  quartz, 178
  silica, 173, 178
Galilei, Galileo, 8
Gaussian thin-lens formulas, 63
germanium, 182
Giambattista della Porto, 7
glare stops, 202
glass
  BK7, 72, 175
crown, 124, 175
flint, 124, 175
SF1, 175
  identification number, 174
map, 174
gold coating, 136
Grimaldi, Francesco, 9

Hall, Chester Moor, 9
Hastings cemented triplet, 150
head prism, 170
height solve, 73
Herschel, Sir William, 11
Hindle sphere, 227
homogeneity, 176
Hooke, Robert, 10
HOYA, 15
Hubble Space Telescope, 19
human eye, 189
Huygens, Christiaan, 8
hyperbola, 266
hyperboloid, 226
hyperfocal distance, 66
hyperopia, 192

illuminance, 263
image
  brightness, 60
derotation, 140
evaluation, 205
plane, 56
quality, 215, 220
reversal, 132
size, 47
imager lens, 220
implanted artificial lens, 192
index of refraction, 174
infrared
  energy, 181
materials, 188
systems, 136, 173, 181

injection molding, 186
interpupillary distance, 163
iris, 189
diaphragm, 49
ISO rating, 261

Janssen, Hans, 10
Janssen, Johannes, 7
Janssen, Zacharias, 10
jig alignment telescope, 167

k (conic constant), 266
Kepler, Johannes, 8
Kollmorgen
  Optical Company, 17
  Frederick, 15, 16

Lambda Research Corp., 72, 80
laparoscope, 169
laser range finder, 26, 169
lateral color, 117, 200–202
law of
  reflection, 30
  refraction, 9, 37
Lee, H. W., 13
lens, 123
  aberrations, 103
  apochromatic, 212
data, 209
design, 15, 205
double-Gauss, 220
equi-convex, 71
field flattener, 112
Hastings cemented triplet, 150
libraries, 89
null, 226, 227
Petzval, 53, 82, 221
plano-convex, 71
thin, 47
simple, 123
  mock-up stage, 70
specifications, 220
lens (continued)
- speed, 47
- light ray concept, 30
- light rays, 28
- light sources, 28
- Lincoln Memorial, 150
- linear expansion, 177
- Lister, Joseph Jackson, 10
- loupe, 147
- low-expansion materials, 178

- magnetic tapes, 237
- magnification, 58, 93
  - value $M$, 148
- magnifier, 148
- magnifying glass, 147
- marginal ray, 49, 54
- Maurolico, Francesco, 6
- maximum visual resolution, 161
- mechanical length, 144
- melt data, 176
- Michelson, Albert A., 13
- micromachined mirror, 137
- micromachining, 138
- microscope, 89, 152, 155
  - magnification, 155
- MIL Handbook 141, 144, 202
- mirror, 130
  - concave, 33
  - convex, 33
  - curved, 136
  - flat, 30, 130
  - front surface, 136
  - Mangin, 137
  - micromachined, 137
  - replicated, 137
  - spherical, 226, 227
- mirror substrate, 131
- modern PC system, 75
- modified symmetrical form, 202
- modulation, 150
- modulation transfer function (MTF),
  - 84, 103, 150, 159
  - data, 128
- monocular, 124, 164
- moon, 161
  - illusion, 232
  - mounting a mirror, 135
  - multilayer coatings, 180
  - multispectral-grade zinc sulfide, 183
  - myopia, 192

- near-infrared spectral bandwidth, 210
- nearsightedness, 192
- negative lens element, 39
- Newton, Isaac, 9
- Newtonian
  - equation, 198
  - thin-lens formula, 63
- noninvasive surgical procedures, 236
- null lens, 226
- numerical aperture, 56, 156

- oblate spheroid, 227
- obscuration, 41
- observed field of view, 150
- Ohara, 15
- optic nerve, 191
- optical
  - axis, 49
  - coatings, 15, 173
  - designer, 2, 77
  - glass, 173
  - illusion, 231
  - instrument, 147
- material
  - acrylic, 185
  - fused quartz, 178
  - fused silica, 173
  - germanium, 182
  - glass, 173
  - plastic, 173, 185, 188
  - polystyrene, 185
  - Pyrex, 178
  - silicon, 183
optical (continued)
material (continued)
zinc selenide, 183
zinc sulfide, 183
micrometer, 167
path difference, 196
error, 227
range finder, 142
schematic, 209, 218, 225
sight level, 166
spectrum, 44
tooling instruments, 166
Optical Design for Visual Systems, 153, 202
optimization, 207
procedure, 200
stage, 213
OSLO (Optics Software for Layout and Optimization), 80, 205
OSLO-EDU, 72, 81, 205
overall length, 144
Owens CERVIT, 178

parabola, 265–266
paraboloid, 226
paraxial solves, 213
Pechan derotation prism, 144
performance evaluation, 215
periscope, 18
"golf course", 169
submarine, 115, 169, 171
perspective, 232
Petzval,
curvature, 108, 112
Joseph, 10, 15
lens, 53, 82, 221
photography, 239
still, 239
photometry, 259
pincushion effect, 112
plane
image, 56
sagittal, 51
tangential, 51
plano-convex, 71
plastic, 173
Plato, 5
point-spread function, 88, 119
polymethylmethacrylate, 185
polystyrene, 185
Ponzo illusion, 231
Porro prism binoculars, 140, 164
positive lens element, 37
postpolishing, 139
precision collimator, 209
primary color, 114
prism, 40, 139
Amici, 140
delta, 140
derotation, 144
deviating, 142
dove, 140
Pechan, 140
derotation, 144
penta, 140
Porro, 140
right-angle, 139
roof Pechan, 163, 200–202
producibility, 215
projection television, 237
front, 239
rear, 239
pseudostereo, 236
Ptolemy, 6
pupil
entrance, 49, 202, 220, 221
exit, 49, 153, 158, 162, 202
Pyramid of Cheops, 5
Pyrex, 178
radial energy distribution, 87, 103, 159
rainbow, 242
ray
chief, 49, 54
marginal, 49, 54
ray-trace analysis, 222
reference coordinate system, 51
reflecting coating, 135
  aluminum, 135
  gold, 136
  silver, 135
reflection,  
  law of, 30
refraction, 35
  chief-ray, 117
  index of, 35
    for water, 35
  law of, 9, 37
relative illumination, 169
relay lens, 164
replication process, 137
resolution, 192
reticle, 165
retina, 191
riflescope, 164
RKE® eyepiece, 97
Roemer, Olaf, 11
roof  
  angle, 132
  mirror, 132
  Pechan prism, 163, 200–202
  prism, 132
Rudolph, Paul, 10, 13

sag, 265
sagittal plane, 51
scale focal length, 82
scene brightness, 261
Schott  
  Glass Works, 14
  Optical Glass Company, 174
  Zerodur, 178
Schroeder, 10
scientific notation, 23
scratch/dig, 130
secondary color, 96, 114
seeds, 177
semiapochromat, 96
sensitivity, 259
SF1 glass, 175
shutter speed, 261
silicon, 183
silver coating, 135
simple lens  
  mock-up stage, 70
  simple window, 37
Sinclair  
  Optics, 80
  Doug, 80
Smakula, Alexander, 15
Snell, Willebrord, 8
Snell’s law, 37
solid model graphic, 84
Soveril, 14
spectral  
  bandwidth, 212
  response curve, 212
  weights, 213
spectrum  
  optical, 44
  visible, 44
  electromagnetic, 21, 44
speed of light, 24
  in air, 24
spherical  
  aberration, 105
  surface, 136
  test mirror, 227
split-crown element, 124
spot diagram, 103, 159
stage micrometer, 157
standard illuminants, 29
stereo  
  effect, 164
  image, 172
stereoscope, 235
still photography, 239
Stonehenge, 5
Strehl ratio, 119
striae, 177
Strong, John, 15
styrene, 185
surface  
  reflection loss, 179
  sag, 265
surveying, 166
tangential plane, 51
Taylor, H. Dennis, 13, 15
telescope, 152, 158
    alignment, 167
    design, 206
    jig alignment, 167
    magnification, 158
    terrestrial, 163
television
    projection, 237
        front, 239
        rear, 239
    three-dimensional high-definition, 236
test equipment, 229
theodolite, 166
thermal expansion, 178, 215
thin lens, 47
    formulas, 61
        Newtonian, 63
        Gaussian, 63
    power, 52
third dimension, 235
    high-definition television, 236
    movie, 236
    viewing, 236
time, 259
Todd AO, 236
tolerance analysis, 130
tolerances, 88
tolerancing process, 218
total
    internal reflection, 142
    path, 144
transit, 166

van Leeuwenhoek, 10
VCR (videocassette recorder), 241
video camera, 241
videocassette recorder (VCR), 241
vignetting, 73, 84, 169, 223
visible spectrum, 23, 44

visual
    acuity, 192
        as a function of field angle, 191
    resolution capability, 193
    response curve, 152
    system, 231
    test chart, 193
Vitello, 6
vitreous, 191
von Liebig, Justus, 9
wavefront, 27
    curves, 215
    error, 196, 202, 210
wavelength, 21, 212
wedge, 142
    tolerance, 219
weights, 212
worst-case prediction, 219

X axis, 51

Y axis, 51
Young, Thomas, 11

Z axis, 51
Zeiss Tessar lens, 13
zinc
    selenide, 183
    sulfide, 183

276
About the Author

Bruce H. Walker, founder and president of Walker Associates, has been active in the fields of optical engineering and lens design since 1960. He was an optical engineer and lens designer at General Electric from 1960 until 1971. While at GE, he received four patents for specialized lens designs that were used in the medical field. Mr. Walker was with the Electro-Optical Division of Kollmorgen Corporation from 1971 until 1991. He joined Kollmorgen as a senior optical engineer and was promoted to manager of optical engineering in 1981. At Kollmorgen he was a key contributor to all ongoing projects, including military sights, foreign and domestic submarine periscope programs, and the photonics mast, which was developed in the 1980s. Mr. Walker was a member of the editorial advisory board of the Laurin Publishing Company from 1970 until 1999. During those years he contributed more than 30 technical articles to the pages of Photonics (Optical) Spectra, while also making numerous significant contributions to the Photonics Industry Directory. In 1995 Mr. Walker authored the first edition of Optical Engineering Fundamentals. In 2000 he followed with Optical Design for Visual Systems, also available from SPIE as a part of their popular tutorial text series. Since 1991 Mr. Walker has worked as an independent optical design consultant, specializing in providing unique solutions to a variety of optical engineering problems and to the generation of numerous specialized lens designs.