Index

A
absorber, 301
absorbing polymers, 186
absorbing TARCs, 186
absorption coefficient, 90, 294
absorption peak, 289
acid diffusion, 267
length, 107, 108, 269
mathematical model for, 268
rates, 108
acid rinse, 143
activation energy, 136
additive loading, 107
additives, 105
adjacent resist lines, 149
advancing dissolution front, 270
advancing side angle, 73
aerial image
contrast, 216, 266, 296
distortion, 114
air bubbles, 115 (see bubble/s)
on resist surface, 117
small free-floating, 116
alcohol-based casting solvent, 202
alternating phase-shift mask (alt. PSM), 219
amine contamination, 100
amine poisoning, 164
amorphous carbon (a-C), 171
analytical method, 55
anisotropic, 277
development, 188
plasma etch, 277
antibubble defects, 124
antireflection coating (ARC), 159
antireflection control strategies, 167
apex, 145
atomic force microscope (AFM), 69, 149
attenuation mode, 169
averaged edge, 260

B
back end of line (BEOL), 179
back rinse, 27
bake temperature, 30, 102
baking chambers, 163
BaLiF₃, 294
base-soluble polymers, 184
bath and shower, 6
bevel region, 148
bevels, top and bottom, 145
bifunctional surfactant rinses, 46
bilayer resists, 179, 205
bilayer structure, 270
blending polymers, 170
blister, 128
blob defects, 44, 94
blocking groups, 270
Bossung plot, 37
bottom antireflection coating (BARC), 33, 148, 159, 206, 242, 270
open step, 177
strategies, 16
bottom-CD, 298
bottom polymers, 170
bright-field masks, 237
bubble defects, 115, 120
areas surrounding the, 120
formation of, 122
small, 121
bubbles, 7
free-floating, 117
entrapped, 123
bulk dissolution rate, 95
bulk etch rate, 175

C
capillary forces, 39
captive drop method, 80
carbon content, 172
carbon-rich layer, 276
centrifugal force, 22, 26
chemical
 amplification of resist lines
 (CARL), 207
components, diffusion of, 151
composition, 150
flare, 33
 -mechanical planarization (CMP), 7
reactions, 130
shrink technology, 198
vapor deposition (CVD), 160
vapor deposition (CVD) hard mask, 242

circularly shaped defects, 118
cleaning solvent, 65
cleaning study, 66
coating
 defects, 24
 module, 19
 process, 20
combined aerial images, 223
comet defects, 24, 25
compatibility, 88, 164
composite optical lithography (COOL), 221
concentration
 gradient, 62
 of additives versus depth, 106
 of developer, 273
 of quencher base, 271
conformal BARC, 160
contact angle (CA), 40, 73, 82
 measuring methods, 79
contact-hole patterns, 194
contact holes, 137, 195
contrast curves, 61
contrast curves, 61
contrast-enhancement layer (CEL), 226
contaminant transportation, 63
contamination barrier layer, 101
contamination experiments, controlled 64
contradictory requirements, 95
contrast curves, 100
convex microlens, 125
correlation factor, 261
corrugated profile, 159
critical dimension (CD)
 distribution, 252
 shrinkage, 179
cross-linked freezing material, 229
cross-linking, 162
cross-sectional SEMs, 98
cross-wafer CD uniformity (CDU), 37, 196
curved bumps, 128

dark-field alternating PSM, 219
dark-field masks, 236
dark loss, 91
dark loss tests, 92
defect
 count specifications, 112
density, 112
detection, 111, 112
 formation mechanisms, 152
 inspection, 112
 map, 112
 review, 112
 specifications, 152
defectivity, 111
degassing unit, 114
dehydrate, 178
deionized water (DIW), 114
deionized (DI) water rinse, 37, 61
Δ, 218
deposition of outgassed components, 33
deprotection
 depth profile, 270
 process, 107
 rate, 267
 reactions, 267
 threshold, 216, 249
depth of focus (DOF), 7, 9, 10, 297
depth profile of fluorine, 106
design of experiments, 102
destructive interference, 161, 185
developer-insoluble groups, 266
developer-soluble BARCs (DBARCs), 187
developer-soluble gap-fill materials, 182
developer-soluble topcoats, 13, 87
development, 101
 bowls, 34
 time, 35, 273
develop module, 48
device performance, 257
diffusion
behavior, 67
coefficient, 267
of resist components, 227
Dill B parameter, 90
dipole, 221
dispensing of the material, 21
dispensing nozzle, 23
dissolution
contrast, 238
rate, 45, 80, 93, 139
rate monitors, 93
rates of most topcoats, 94
distance between the scan lines, 262
divergence lens, 115
dose fluctuation, 268
dose modulation, 121
double-exponential model, 56, 57
double exposure, 215
of contact holes, 231
with one resist layer, 219
double hard mask approach, 241
double line patterning, 241
double patterning (DP), 215, 217, 235
double trench patterning, 218, 235, 237
downstream process, 184
DRAM design, 251
dry
development, 172, 205
etch-back process, 181
residual, 134
dual-damascene process, 179
dual-tone development, 249
dynamic
contact angles, 74, 78, 83
dispense, 21, 34, 35
leaching procedure (DLP), 54
leaching rate, 58
dynamics of the water meniscus, 74

et
edge bead, 26
edge bead removal (EBR), 27, 147
edge inspection, 146
elongated holes, 197
energy dispersive x-ray spectrometry (EDX), 44
energy meander, 42
environmental humidity, 80

e
etch
conditions, 280
masks, 171
recipes, 175
resistance, 165
selectivity, 175, 177
-stopping capability, 175
EUV lithography, 1
evaluation window, length of, 262
evanescent region, 300
exhaust
flow, 33, 126
system, 163
exposed resist losses, 98
exposure, 88
beam, 11
head, 6, 124, 147
latitude (EL), 107, 161, 297
extraction test method, 54

F
failure of water confinement, 79
filling capability, 183
film deposition processes, 207
film peeling, 147
flow rates, 195
fluid dynamics, 75
fluid management system, 76
fluorinated compounds, 185
fluorinated polymers, 95
fluorination, 204
fluorine-containing compounds, 104
focused ion beam (FIB), 134
focus exposure matrix (FEM), 37
footing, 187
foot pinning, 196
freezing process, 217, 226, 228
fringe pattern, 121
front end of line (FEOL), 210
Fourier transform infrared spectroscopy (FTIR), 163
fused silica, 294

G
gap-fill material, 179
gap-fill strategy, 181
gap height, 76
gas-phase shrink process, 204
gas-saturated water, 122
gate level, 280
gel-type particles, 177

Glass transition temperature (T_g), 40, 194, 197

global planarization, 183

graded BARC (GBARC), 170

graded spin-on BARCs, 170

H

halogen plasma, 172

hard bake, 274

hard mask (HM), 160, 235

HBr plasma, 276

HBr-treated resist, 276

heavy metal salts, 289

hexamethyldisilizane (HMDS), 148, 184

higher-temperature bake (post-develop bake), 231

high-frequency floors, 264

high incidence angles, 166

high-index additives, 289

high-index lens materials, 293

high NA, 8

high-performance 193i resists, 104

high refractive index (RI) materials, 11, 12

high-resolution CD-SEMs, 258

high-RI fluids, 289

leaching into, 292

high-RI functional groups, 295

high-RI immersion fluid, 286

high-RI lenses, 286

high-RI nanoparticles, 289, 295

high-RI resists, 295

high-temperature bakes, 32, 162

high-temperature curing processes, 245

horizontal and vertical lines, 222

horizontal diffusion length, 271

hotplates, 29, 47, 48

hovering, 141

hybrid optical maskless lithography (HOMA), 220

hydrophilic, 74, 170

resist surfaces, 78

hydrophobic, 73, 74, 95, 138

resist surfaces, 78

topoacoats, 139

hydrophobicity, 75, 80, 94, 105, 137, 143

hydrophobicity of the resist, 136

hyper-NA, 10

193i exposure, 15

hysteresis, 75

I

ing illumination polarization, 301

image-assisted double exposure, 224

image contrast, losses in, 219

image intensity, reduction of, 117

image log-slope (ILS), 265, 269

image modulation, 120

image placement error, 218

for spaces, 241

imaging layer, 205

immersion fluid, 10, 286

immersion-related defects, 14, 111

immersion-specific process steps, 46

immersion water, 114

handling system, 6

implantation of argon ions, 234

implant levels, 184

incident angle, 15

innovative materials, 226

inorganic BARCs, 159

in situ cleaning, 65, 145

intensity slope, 265

interaction of local resist and water, 131

intermediate etch, 217, 235

interference patterns, 93

interferometric exposure, 220

intermixed layer, 91, 151

interpolymer complex (IPC), 202

intrinsic

flush, 61

material roughness (IMR), 266, 271

topoacoats, 105

inverse lithography, 223

iso-dense bias, 208

isolation layer, 176

isotropic, 277

ITRS, 112

K

k_1 factor, 4, 217

Köhler illumination, 3

Kramers-Kronig relation, 289
Index

L
- Laplace equation, 136
- large-band-gap ionic materials, 294
- leach-induced lens contamination, 62
- leaching, 12
 - characteristics of a resist, 53
 - components, 66
 - problems, 53
 - rate, 56, 57, 132
 - with exposure, 60
- light intensity, fluctuations in, 266, 268
- light polarization, 166
- line collapse, 41, 42
- line-collapse process window, 42
- line-edge roughness (LER), 37, 96, 196, 257
 - transfer of, 277
- line segment, 258
- line shifts, 125
- line-width roughness (LWR), 257
- line-width variation, 259
- liquid chromatography mass spectrometry (LC-MS), 55
- liquid particle counts, 178
- lithographic performance, 95
- uncertainty principle, 269
- loading effect, 208
- loose flakes, 145
- low-frequency plateaus, 264
- low NA, 9
- low surface energies, 104
- LuAG (Lu$_3$Al$_5$O$_{12}$), 294

M
- magnifying effect, 117
- mask error enhancement factor (MEEF), 37, 197, 198
- mask patterns, 265
- material processes, 19
- material viscosity, 22
- maximally effective NA, 285
- maximum numerical aperture, 285
- measurement window, 259
- meniscus, 76, 79, 145
- microbridge defects, 118, 149
- microlenses, 125
- mid-frequency roll-offs, 264
- migrate, 95
- misalignment, 218
- mixing bake, 199
- molecular weight increase, 177
- multiple development cycles, 45

N
- nanoparticles, polystyrene and silica, 145
- negative
 - organic developer, 249
 - resists, 237
 - SADP, 245
 - -tone developers, 238, 239
- nonlinear resists, 219
- nonphotosensitive DBARCs, 187
- nonuniform coatings, 128
- normalized aspect ratio (NAR), 42
- normal route, 141
- nozzle tip, 28
- nucleated holes, 148
- number of water droplets, 137
- numerical aperture (NA), 4, 7
 - boosting of, 285

O
- Ohnishi parameter, 165
- opaque particles, 150
- open frame exposures, 100
- optical path difference (OPD), 8
- optical proximity correction (OPC), 208, 223
- optimum thickness, 161
- organic BARCs, 159
- organic-solvent atmosphere, 275
- oriented resist stripes, 25
- outgassing
 - of chemical components, 162
 - of the resist, 122
- overcoating, 199
- overexposed regions, 124
- overlay (OL), 224
 - control, 218
 - errors, 241
- oxygen plasma, 172
 - etch, 181

P
- pack and unpack (PAU), 234
- paraxial approximation, 9
- partially deprotected resist polymers, 44
particle, shape and curvature of, 126
particle per wafer pass (PWP), 113
particles, 144
phase segregation, 105
phase-shift mask (PSM), 221
photoacid, 101
 generator (PAG), 29, 59, 61, 266
distribution, 103
photolithographic system, 3
photomaterials consumption, 23
photoresist, 2
photosensitive, 2
DBARC, 188
photosensitivity, local resist 130
photosensitivity reduction, 232
pH value shock, 44
physical or chemical processes, 193
pinhole defects, 148
pinhole densities, 149
Piranha, 178
plasma-assisted shrink, 207
polarity parameter of the developer, 239
polishing the edge, 148
polymer
 blending, 95, 105
deprotection, 266
 platform, 271
size, 269
poly-Si, 242, 280
film, 280
polystyrene spheres, 115, 116
positive
 resists, 236
 SADP, 245
 -tone resists, 251
post-apply bake (PAB), 29, 33, 68, 101,
 102, 103, 113, 184, 194
 optimized temperatures for, 103
post-develop bake (PDB), 231
post-exposure delay, 30, 31, 101, 102,
 103, 194, 270
post-rinse process, 143
power spectral density (PSD), 263
pre- and post-rinses, 142
pre-rinse process, 47
pre-wet, 20, 23
prism cell, 287
process, 2
 chamber, 204
 modules, 19
 process (cont.)
 optimization, 189
 parameters, 271
window (PW), 42, 98
profile degradation, 203
projection lens, 3
propylene glycol monomethyl ether
 (PGMEA), 21
protective-layer approach, 230
proximity baking, 30
proximity effect, 197
puddle, 34
puddle time, 36

Q
quantitative structure property
 relationship (QSPR), 295
quartz crystal microbalance (QCM), 33,
 67, 164
quartz plate, 163

R
radioactive labeling, 56
ratio of the etch rates, 176
reaction-limiting step, 108
receding side, 73
reduction factor, 302
reflow bake, 195
refractive index (RI), 4, 11
 of the topcoat, 88
RELACS, 198, 201, 202, 203, 236
relative surface energies, 106
residual solvent, 272
resist, 13, 53, 54, 58, 59, 60, 61, 68, 69,
 73, 88, 92, 98, 100, 105, 194, 196
 compatibility, 176
 development, 34
film loss, 100
film surface roughness (RMS), 271
flow, 24
footing, 164, 270
gratings, 220
line, height and sidewall of, 247
line collapse, 39
line edge, 258
swell, 132
loss, 103
or topcoat, adhesion of, 147
particles, source of, 126
Index 313

resist (cont.)
- patterns, rinsing, 274
- positive and negative, 226
- processes, 14
- sensitivity, losses in, 100
- surface treatment, 84
- swelling, 129
- thickness, 21
- resolution, 3
- retention time, 137, 207
- ridges or trenches in the resist, 123
- rinse modules, 137, 142
- roughness exponent, 262
- roughness of sidewalls, 277
- routing, 5, 141

S
- sacrificial material, 246
- SAFIER, 203
- sampling distance, 263
- sapphire (Al₂O₃), 300
- satellite spot defects, 44
- saturated PAG concentration, 56
- saturation leaching levels, 58
- scan coating, 28
- scanning electron microscopy (SEM), 113
- scanning/scan speed, 4, 76, 139
- secondary-ion mass spectroscopy (SIMS), 204
- second-generation (G2) fluids, 286, 287
- second-generation immersion, 285
- self-aligned double patterning (SADP), 245, 246, 247
- self-segregating additives, 104
- Sessil drop method, 79
- shadow effect, 116
- shelves, 177
- shorter development time, 41
- shot noise, 268
- shower configuration, 6
- shrink, 194
- materials, 199
- processes, 193
- shrinkage, 194
- dependence on initial CD, 210
- values, 195
- bake, 199
- shrinking
- mechanism, 203
- shrinking (cont.)
- uniformity, 202
- Si-containing BARC (Si-BARC), 171, 245
- Si-containing hard-masks, 242
- Si-containing resists, 205, 242, 295
- Si content, 175
- sidewall angle (SWA), 297
- silsesquioxane (SSQ), 176, 205
- silylation process, 207
- simple threshold model, 265
- simplified immersion system, 62
- single-component organic liquids, 289
- single-layer BARC, 166
- SiON, 164
- sliding angle, 79
- smoothing processes, 271
- Snell’s law, 7
- solid immersion, 300
- solvent
- -based topcoats, 13
- bath, 28
- cleaning procedures, 93
- compatibility, 91
- incompatibility, 93
- nozzle, 20
- rinse experiments, 92
- -soluble topcoats, 87
- splashing, 27
- vapor, 275, 276
- spacer
- double patterning (SDP), 247
- formation, 249
- material, 246
- spatial frequency, 263
- spectrum of the roughness, 262
- doubling, 216, 226
- special routes, 141
- spin speed, 23
- spin table, 20
- spin-on
- carbon (SOC), 171, 176, 242
- dual-layer BARCs, 168
- hard masks, 160
- spin-speed oscillation, 37
- standard deviation, 259
- static
- contact angles, 74, 75
- dispense, 21, 34
- striations, 25

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 17 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
stripes, 144
sublimation, 33
rate, 33
tests, 163
sulfur-containing polymers, 295
surface
 affinity, 165
 components, 83
 conditioners, 274
tension, 25, 40, 136
surfactant-containing DI water, 42
surfactant rinse, 41, 45, 84
suspended particles, 144
swing amplitude (SA), 160
swing curves, 89

T
tapered Si-BARC profiles, 179
temperature
 gradients, controllable, 31
 nonuniformity, 30
 of a hotplate, 30
tetralayer approach, 176
tetramethylammonium hydroxide (TMAH), 35, 91, 107
thermal
 BARCs, 188
 decomposition temperatures, 197
 flow, 183
 freezing processes, 233
 gradient plate (TGP), 31
 reflow, 194, 198
thermally freezeable resist, 232
thick BARC, 178
thickness
 bias, 183
 uniformity, 22 183
third-generation (G3) fluids, 286
third-generation high-index fluids, 291
three-phase contact point, 80
threshold voltage variations, 257
throughput, 217
time-of-flight–secondary ion mass spectroscopy (TOF–SIMS), 131
top antireflection coating (TARC), 159
top-CID, 298
topcoat (cont.)
 blob defects, 93
 -enclosed water bubble, 128
 thickness, ideal, 89
topographic wafers, 123
top polymer, 170
top rounding, 196
total oxidizable carbon (TOC), 114
track, 19
 performance, 47
transformation rate, 280
transition region, 270
transmittance, 66
transparent, 90
 sphere, 125
 TARC, 186
transverse electric (TE) components, 15
 polarizer, 302
transverse magnetic (TM) imaging component, 15
treatments, physical or chemical, 83
trilayer process, 172
trim process, 194
 steps, 210
 rate, 211
triple and quadruple patterning, 252
T-topping, 133
turbulence, 124, 141

U
ultra-casting pre-dispense (UCP), 23
ultrathin cross-linked layer, 229
ultrathin films, 148
ultraviolet (UV) curing methods, 233
undercut, 187
 profile, 196
underexposed ring, 126
underlayer, 205
underlayer technology, 160
uniform growth, 202
 uniformity, 21
uniform optical parameters, 170

V
vacuum ultraviolet (VUV) light, 276
viscosity of the resist, 22
volume of each dispense, 21
Index 315

W
wafer
 adhesion to, 148
 edge, 26, 145
 edge exposure (WEE), 27
 stage, 144
 tilting angle, 79
water
 bubble, topcoat-enclosed, 128
 characteristics of, 287
 confinement, ideal, 139
 diffusion, 67
 diffusion coefficient, 68
 droplets, 130
 extraction and analysis (WEXA), 54
 -insoluble layer, 199
 leakage, 78, 141
 meniscus, 73
 -resist contact angle, 40
 uptake, 53
watermark defects, 130
 formation mechanism of, 131
 local cross-sections of, 132
watermark-proof, 137
watermarks, 94
wet-BARC, 187
wet-recess, 182
Wilhelmy plate, 82

X
X- and Y-polarized light, 167

Z
zipper gel principles, 202
Yayi Wei received his Masters Degree in Engineering from the Electronics Institute, Chinese Academy of Sciences, Beijing, China in 1992 and his Doctorate (Doktor der Naturwissenschaften) from the Max Planck Institute for Solid State Research, Stuttgart, Germany in 1998. As a graduate student in the Max Planck Institute for Solid State Research, Dr. Wei specialized in the electronic transportation of low-dimensional structures and microfabrications. After receiving his Doctorate, Dr. Wei worked for Oak Ridge National Laboratory (ORNL) on electron-beam lithography and nanofabrications; Infineon Technologies, which later became Qimonda, on the process development and material evaluation of advanced lithography in 193-, 157-, and 193-nm immersion, as well as EUV; and AZ Electronic Materials on lithographic materials applications. Dr. Wei has numerous publications and holds several patents in the field of lithography.

Robert L. Brainard received his B.S. in Chemistry from U.C. Berkeley in 1979. He synthesized and studied the reaction mechanisms of organoplatinum compounds during his graduate studies with George Whitesides at MIT and Harvard University. After receiving his Ph.D. in 1985, he studied the reaction mechanisms on copper and silver surfaces under ultrahigh vacuum conditions as a post-doctoral student at Stanford University. Robert worked for Polaroid 1987–1990, where he developed new gold and sulfur chemistry for use in the chemical sensitization of silver halide photographic emulsions. He worked at Shipley/Rohm & Haas 1990–2005, where he did product development research in the areas of: electrodeposited, dielectric, color filter, DUV, EUV, x-ray and e-beam photoresists. Robert is now an Associate Professor at the College of Nanoscale Science and Engineering, UAlbany, investigating new materials for use in EUV and 193-nm lithography.

(Photo of Robert Brainard by Mia Ertas, UAlbany College of Nanoscale Science and Engineering.)