Index

A
absorber, 301
absorbing polymers, 186
absorbing TARCs, 186
absorption coefficient, 90, 294
absorption peak, 289
acid diffusion, 267
 length, 107, 108, 269
 mathematical model for, 268
 rates, 108
acid rinse, 143
activation energy, 136
additive loading, 107
additives, 105
adjacent resist lines, 149
advancing dissolution front, 270
advancing side angle, 73
aerial image
 contrast, 216, 266, 296
 distortion, 114
air bubbles, 115 (see bubble/s)
 on resist surface, 117
 small free-floating, 116
alcohol-based casting solvent, 202
alternating phase-shift mask (alt. PSM), 219
amine contamination, 100
amine poisoning, 164
amorphous carbon (a-C), 171
analytical method, 55
anisotropic, 277
development, 188
 plasma etch, 277
antibubble defects, 124
antireflection coating (ARC), 159
antireflection control strategies, 167
apex, 145
atomic force microscope (AFM), 69, 149
attenuation mode, 169
averaged edge, 260

B
back end of line (BEOL), 179
back rinse, 27
bake temperature, 30, 102
baking chambers, 163
BaLiF₃, 294
base-soluble polymers, 184
bath and shower, 6
bevel region, 148
bevels, top and bottom, 145
bifunctional surfactant rinses, 46
bilayer resists, 179, 205
bilayer structure, 270
blending polymers, 170
blisters, 128
blob defects, 44, 94
blocking groups, 270
Bossung plot, 37
bottom antireflection coating (BARC), 33, 148, 159, 206, 242, 270
 open step, 177
 strategies, 16
bottom-CD, 298
bottom polymers, 170
bright-field masks, 237
bubble defects, 115, 120
 areas surrounding the, 120
 formation of, 122
 small, 121
bubbles, 7
 free-floating, 117
 entrapped, 123
bulk dissolution rate, 95
bulk etch rate, 175

C
capillary forces, 39
captive drop method, 80
carbon content, 172
carbon-rich layer, 276
centrifugal force, 22, 26
chemical
 amplification of resist lines (CARL), 207
 components, diffusion of, 151
 composition, 150
flare, 33
 -mechanical planarization (CMP), 7
 reactions, 130
shrink technology, 198
vapor deposition (CVD), 160
vapor deposition (CVD) hard mask, 242
circularly shaped defects, 118
cleaning solvent, 65
cleaning study, 66
coating
 defects, 24
 module, 19
 process, 20
combined aerial images, 223
comet defects, 24, 25
compatibility, 88, 164
composite optical lithography (COOL), 221
concentration
 gradient, 62
 of additives versus depth, 106
 of developer, 273
 of quencher base, 271
conformal BARC, 160
contact angle (CA), 40, 73, 82
 measuring methods, 79
contact-hole patterns, 194
contact holes, 137, 195
contrast curves, 61
contrast-enhancement layer (CEL), 226
contaminant transportation, 63
contamination barrier layer, 101
contamination experiments, controlled 64
contradictory requirements, 95
contrast curves, 100
convex microlens, 125
correlation factor, 261
corrugated profile, 159
critical dimension (CD)
 distribution, 252
 shrinkage, 179
cross-linked freezing material, 229
cross-linking, 162
cross-sectional SEMs, 98
cross-wafer CD uniformity (CDU), 37, 196
curved bumps, 128
D
dark-field alternating PSM, 219
dark-field masks, 236
dark loss, 91
dark loss tests, 92
defect
 count specifications, 112
 density, 112
 detection, 111, 112
 formation mechanisms, 152
 inspection, 112
 map, 112
 review, 112
 specifications, 152
defectivity, 111
degassing unit, 114
dehydrate, 178
deionized water (DIW), 114
deionized (DI) water rinse, 37, 61
Δ, 218
deposition of outgassed components, 33
depletion
 depth profile, 270
 process, 107
 rate, 267
 reactions, 267
 threshold, 216, 249
depth of focus (DOF), 7, 9, 10, 297
depth profile of fluorine, 106
design of experiments, 102
destructive interference, 161, 185
developer-insoluble groups, 266
developer-soluble BARCs (DBARCs), 187
developer-soluble gap-fill materials, 182
developer-soluble topcoats, 13, 87
development, 101
 bowls, 34
 time, 35, 273
develop module, 48
device performance, 257
diffusion
 behavior, 67
 coefficient, 267
 of resist components, 227
Dill B parameter, 90
dipole, 221
dispensing of the material, 21
dispensing nozzle, 23
dissolution
 contrast, 238
 rate, 45, 80, 93, 139
 rate monitors, 93
 rates of most topcoats, 94
distance between the scan lines, 262
divergence lens, 115
dose fluctuation, 268
dose modulation, 121
double-exponential model, 56, 57
double exposure, 215
 of contact holes, 231
 with one resist layer, 219
double hard mask approach, 241
double line patterning, 241
double patterning (DP), 215, 217, 235
double trench patterning, 218, 235, 237
downstream process, 184
DRAM design, 251
dry
 development, 172, 205
 etch-back process, 181
 residual, 134
dual-damascene process, 179
dual-tone development, 249
dynamic
 contact angles, 74, 78, 83
 dispense, 21, 34, 35
 leaching procedure (DLP), 54
 leaching rate, 58
 dynamics of the water meniscus, 74
Etch
 conditions, 280
 masks, 171
 recipes, 175
 resistance, 165
 selectivity, 175, 177
 stopping capability, 175
EUV lithography, 1
evaluation window, length of, 262
evanescent region, 300
exhaust
 flow, 33, 126
 system, 163
exposed resist losses, 98
exposure, 88
 beam, 11
 head, 6, 124, 147
 latitude (EL), 107, 161, 297
extraction test method, 54
F
failure of water confinement, 79
filling capability, 183
film deposition processes, 207
film peeling, 147
flow rates, 195
fluid dynamics, 75
fluid management system, 76
fluorinated compounds, 185
fluorinated polymers, 95
fluorination, 204
fluorine-containing compounds, 104
focused ion beam (FIB), 134
focus exposure matrix (FEM), 37
footing, 187
foot pinning, 196
freezing process, 217, 226, 228
fringe pattern, 121
front end of line (FEOL), 210
Fourier transform infrared spectroscopy (FTIR), 163
fused silica, 294
G
gap-fill material, 179
gap-fill strategy, 181
gap height, 76
gas-phase shrink process, 204
gas-saturated water, 122
gate level, 280
gel-type particles, 177
glass transition temperature (T_g), 40, 194, 197
global planarization, 183
graded BARC (GBARC), 170
graded spin-on BARCs, 170

H
halogen plasma, 172
hard bake, 274
hard mask (HM), 160, 235
HBr plasma, 276
HBr-treated resist, 276
heavy metal salts, 289
hexamethyldisilizane (HMDS), 148, 184
higher-temperature bake (post-develop bake), 231
high-frequency floors, 264
high incidence angles, 166
high-index additives, 289
high-index lens materials, 293
high NA, 8
high-performance 193i resists, 104
high refractive index (RI) materials, 11, 12
high-resolution CD-SEMs, 258
high-RI fluids, 289
leaching into, 292
high-RI functional groups, 295
high-RI immersion fluid, 286
high-RI lenses, 286
high-RI nanoparticles, 289, 295
high-RI resists, 295
high-temperature bakes, 32, 162
high-temperature curing processes, 245
horizontal and vertical lines, 222
horizontal diffusion length, 271
hotplates, 29, 47, 48
hovering, 141
hybrid optical maskless lithography (HOMA), 220
hydrophilic, 74, 170
resist surfaces, 78
hydrophobic, 73, 74, 95, 138
resist surfaces, 78
topoats, 139
hydrophobicity, 75, 80, 94, 105, 137, 143
hydrophobicity of the resist, 136
hyper-NA, 10
193i exposure, 15
hysteresis, 75

I
illumination polarization, 301
image-assisted double exposure, 224
image contrast, losses in, 219
image intensity, reduction of, 117
image log-slope (ILS), 265, 269
image modulation, 120
image placement error, 218
for spaces, 241
imaging layer, 205
immersion fluid, 10, 286
immersion-related defects, 14, 111
immersion-specific process steps, 46
immersion water, 114
handling system, 6
implantation of argon ions, 234
implant levels, 184
incident angle, 15
innovative materials, 226
inorganic BARCs, 159
in situ cleaning, 65, 145
intensity slope, 265
interaction of local resist and water, 131
intermediate etch, 217, 235
interference patterns, 93
interferometric exposure, 220
intermixed layer, 91, 151
interpolymer complex (IPC), 202
intrinsic
flush, 61
material roughness (IMR), 266, 271
topoats, 105
inverse lithography, 223
iso-dense bias, 208
isolation layer, 176
isotropic, 277
ITRS, 112

K
k_1 factor, 4, 217
Köhler illumination, 3
Kramers-Kronig relation, 289
L
Laplace equation, 136
large-band-gap ionic materials, 294
leach-induced lens contamination, 62
leaching, 12
characteristics of a resist, 53
components, 66
problems, 53
rate, 56, 57, 132
with exposure, 60
light intensity, fluctuations in, 266, 268
light polarization, 166
line collapse, 41, 42
line-collapse process window, 42
line-edge roughness (LER), 37, 96, 196, 257
transfer of, 277
line segment, 258
line shifts, 125
line-width roughness (LWR), 257
line-width variation, 259
liquid chromatography mass spectroscopy (LC-MS), 55
liquid particle counts, 178
lithographic
performance, 95
uncertainty principle, 269
loading effect, 208
loose flakes, 145
low-frequency plateaus, 264
low NA, 9
low surface energies, 104
LuAG (Lu₃Al₅O₁₂), 294
M
magnifying effect, 117
mask error enhancement factor (MEEF), 37, 197, 198
mask patterns, 265
material processes, 19
material viscosity, 22
maximally effective NA, 285
maximum numerical aperture, 285
measurement window, 259
meniscus, 76, 79, 145
microbridge defects, 118, 149
microlenses, 125
mid-frequency roll-offs, 264
migrate, 95
misalignment, 218
mixing bake, 199
molecular weight increase, 177
multiple development cycles, 45
N
nanoparticles, polystyrene and silica, 145
negative
organic developer, 249
resists, 237
SADP, 245
-tone developers, 238, 239
nonlinear resists, 219
nonphotosensitive DBARCs, 187
nonuniform coatings, 128
normalized aspect ratio (NAR), 42
normal route, 141
nozzle tip, 28
nucleated holes, 148
number of water droplets, 137
numerical aperture (NA), 4, 7
boosting of, 285
O
Ohnishi parameter, 165
opaque particles, 150
open frame exposures, 100
optical path difference (OPD), 8
optical proximity correction (OPC), 208, 223
optimum thickness, 161
organic BARCs, 159
organic-solvent atmosphere, 275
oriented resist stripes, 25
outgassing
of chemical components, 162
of the resist, 122
overcoating, 199
overexposed regions, 124
overlay (OL), 224
control, 218
errors, 241
oxygen plasma, 172
etch, 181
P
pack and unpack (PAU), 234
paraxial approximation, 9
partially deprotected resist polymers, 44
particle, shape and curvature of, 126
particle per wafer pass (PWP), 113
particles, 144
phase segregation, 105
phase-shift mask (PSM), 221
photoacid, 101
generator (PAG), 29, 59, 61, 266
distribution, 103
photolithographic system, 3
photomaterials consumption, 23
photoresist, 2
photosensitive, 2
DBARC, 188
photosensitivity, local resist 130
photosensitivity reduction, 232
pH value shock, 44
physical or chemical processes, 193
pinhole defects, 148
pinhole densities, 149
Piranha, 178
plasma-assisted shrink, 207
polarity parameter of the developer, 239
polishing the edge, 148
polymer
blending, 95, 105
deprotection, 266
platform, 271
size, 269
poly-Si, 242, 280
film, 280
polystyrene spheres, 115, 116
positive
resists, 236
SADP, 245
-tone resists, 251
post-apply bake (PAB), 29, 33, 68, 101, 102, 103, 113, 184, 194
optimized temperatures for, 103
post-develop bake (PDB), 231
post-exposure delay, 30, 31, 101, 102, 103, 194, 270
post-rinse process, 143
power spectral density (PSD), 263
pre- and post-rinse, 142
pre-rinse process, 47
pre-wet, 20, 23
prism cell, 287
process, 2
chamber, 204
modules, 19
process (cont.)
optimization, 189
parameters, 271
window (PW), 42, 98
profile degradation, 203
projection lens, 3
propylene glycol monomethyl ether (PGMEA), 21
protective-layer approach, 230
proximity baking, 30
proximity effect, 197
puddle, 34
puddle time, 36

Q
quantitative structure property relationship (QSPR), 295
quartz crystal microbalance (QCM), 33, 67, 164
quartz plate, 163

R
radioactive labeling, 56
ratio of the etch rates, 176
reaction-limiting step, 108
receding side, 73
reduction factor, 302
reflow bake, 195
refractive index (RI), 4, 11
of the topcoat, 88
RELACS, 198, 201, 202, 203, 236
relative surface energies, 106
residual solvent, 272
resist, 13, 53, 54, 58, 59, 60, 61, 68, 69, 73, 88, 92, 98, 100, 105, 194, 196
compatibility, 176
development, 34
film loss, 100
film surface roughness (RMS), 271
flow, 24
footing, 164, 270
gratings, 220
line, height and sidewall of, 247
line collapse, 39
line edge, 258
swell, 132
loss, 103
or topcoat, adhesion of, 147
particles, source of, 126
Index 313

resist (cont.)
- patterns, rinsing, 274
- positive and negative, 226
- processes, 14
- sensitivity, losses in, 100
- surface treatment, 84
- swelling, 129
- thickness, 21

resolution, 3

retention time, 137, 207

ridges or trenches in the resist, 123

rinse modules, 137, 142

roughness exponent, 262

roughness of sidewalls, 277

routing, 5, 141

S

sacrificial material, 246

SAFIER, 203

sampling distance, 263

sapphire (Al₂O₃), 300

satellite spot defects, 44

saturated PAG concentration, 56

saturation leaching levels, 58

scan coating, 28

scanning electron microscopy (SEM), 113

scanning/scan speed, 4, 76, 139

secondary-ion mass spectroscopy (SIMS), 204

second-generation (G2) fluids, 286, 287

second-generation immersion, 285

self-aligned double patterning (SADP), 245, 246, 247

self-segregating additives, 104

Sessil drop method, 79

shadow effect, 116

shelflives, 177

shorter development time, 41

shot noise, 268

shower configuration, 6

shrink, 194
- materials, 199
- processes, 193

shrinkage, 194
- dependence on initial CD, 210
- values, 195
- bake, 199

shrinking (cont.)
- uniformity, 202

Si-containing BARC (Si-BARC), 171, 245

Si-containing hard-masks, 242

Si-containing resists, 205, 242, 295

Si content, 175

sidewall angle (SWA), 297

silsesquioxane (SSQ), 176, 205

silylation process, 207

simple threshold model, 265

simplified immersion system, 62

single-component organic liquids, 289

single-layer BARC, 166

SiON, 164

sliding angle, 79

smoothing processes, 271

Snell’s law, 7

solid immersion, 300

solvent
- based topcoats, 13
- bath, 28
- cleaning procedures, 93
- compatibility, 91
- incompatibility, 93
- nozzle, 20
- rinse experiments, 92
- -soluble topcoats, 87
- splashing, 27
- vapor, 275, 276

spacer
- double patterning (SDP), 247
- formation, 249
- material, 246

spatial frequency, 263
- spectrum of the roughness, 262
doubling, 216, 226

special routes, 141

spin speed, 23

spin table, 20

spin-on
- carbon (SOC), 171, 176, 242
dual-layer BARCs, 168
hard masks, 160
spin-speed oscillation, 37
standard deviation, 259
static
- contact angles, 74, 75
dispense, 21, 34
striations, 25
stripes, 144
sublimation, 33
rate, 33
tests, 163
sulfur-containing polymers, 295
surface
 affinity, 165
 components, 83
 conditioners, 274
 tension, 25, 40, 136
surfactant-containing DI water, 42
surfactant rinse, 41, 45, 84
suspended particles, 144
swing amplitude (SA), 160
swing curves, 89

T
tapered Si-BARC profiles, 179
temperature
 gradients, controllable, 31
 nonuniformity, 30
 of a hotplate, 30
tetralayer approach, 176
tetramethylammonium hydroxide (TMAH), 35, 91, 107
thermal
 BARCs, 188
 decomposition temperatures, 197
 flow, 183
 freezing processes, 233
 gradient plate (TGP), 31
 reflow, 194, 198
thermally freezeable resist, 232
thick BARC, 178
thickness
 bias, 183
 uniformity, 22 183
third-generation (G3) fluids, 286
third-generation high-index fluids, 291
three-phase contact point, 80
threshold voltage variations, 257
throughput, 217
time-of-flight–secondary ion mass spectroscopy (TOF–SIMS), 131
top antireflection coating (TARC), 159
top-CD, 298
topcoat (cont.)
 blob defects, 93
 -enclosed water bubble, 128
 thickness, ideal, 89
topographic wafers, 123
top polymer, 170
top rounding, 196
total oxidizable carbon (TOC), 114
track, 19
 performance, 47
transformation rate, 280
transition region, 270
transmittance, 66
transparent, 90
 sphere, 125
 TARC, 186
transverse electric (TE) components, 15
 polarizer, 302
transverse magnetic (TM) imaging component, 15
treatments, physical or chemical, 83
trilayer process, 172
trim process, 194
 steps, 210
 rate, 211
triple and quadruple patterning, 252
T-topping, 133
turbulence, 124, 141

U
ultra-casting pre-dispense (UCP), 23
ultrathin cross-linked layer, 229
ultrathin films, 148
ultraviolet (UV) curing methods, 233
undercut, 187
 profile, 196
underexposed ring, 126
underlayer, 205
underlayer technology, 160
uniform growth, 202
uniformity, 21
uniform optical parameters, 170

V
vacuum ultraviolet (VUV) light, 276
viscosity of the resist, 22
volume of each dispense, 21
W
wafer
 adhesion to, 148
 edge, 26, 145
 edge exposure (WEE), 27
 stage, 144
 tilting angle, 79
water
 bubble, topcoat-enclosed, 128
 characteristics of, 287
 confinement, ideal, 139
 diffusion, 67
 diffusion coefficient, 68
 droplets, 130
 extraction and analysis (WEXA), 54
 -insoluble layer, 199
 leakage, 78, 141
 meniscus, 73
 -resist contact angle, 40
 uptake, 53
watermark defects, 130
 formation mechanism of, 131
 local cross-sections of, 132
watermark-proof, 137
watermarks, 94
wet-BARCs, 187
wet-recess, 182
Wilhelmy plate, 82

X
X- and Y-polarized light, 167

Z
zipper gel principles, 202
Yayi Wei received his Masters Degree in Engineering from the Electronics Institute, Chinese Academy of Sciences, Beijing, China in 1992 and his Doctorate (Doktor der Naturwissenschaften) from the Max Planck Institute for Solid State Research, Stuttgart, Germany in 1998. As a graduate student in the Max Planck Institute for Solid State Research, Dr. Wei specialized in the electronic transportation of low-dimensional structures and microfabrications. After receiving his Doctorate, Dr. Wei worked for Oak Ridge National Laboratory (ORNL) on electron-beam lithography and nanofabrications; Infineon Technologies, which later became Qimonda, on the process development and material evaluation of advanced lithography in 193-, 157-, and 193-nm immersion, as well as EUV; and AZ Electronic Materials on lithographic materials applications. Dr. Wei has numerous publications and holds several patents in the field of lithography.

Robert L. Brainard received his B.S. in Chemistry from U.C. Berkeley in 1979. He synthesized and studied the reaction mechanisms of organoplatinum compounds during his graduate studies with George Whitesides at MIT and Harvard University. After receiving his Ph.D. in 1985, he studied the reaction mechanisms on copper and silver surfaces under ultrahigh vacuum conditions as a post-doctoral student at Stanford University. Robert worked for Polaroid 1987–1990, where he developed new gold and sulfur chemistry for use in the chemical sensitization of silver halide photographic emulsions. He worked at Shipley/Rohm & Haas 1990–2005, where he did product development research in the areas of: electrodeposited, dielectric, color filter, DUV, EUV, x-ray and e-beam photoresists. Robert is now an Associate Professor at the College of Nanoscale Science and Engineering, UAlbany, investigating new materials for use in EUV and 193-nm lithography.