Advanced Processes for 193-nm Immersion Lithography

Yayi Wei
Robert L. Brainard

SPIE PRESS
Bellingham, Washington USA
Contents

Preface xiii
List of Acronyms and Abbreviations xvii

1 Immersion Lithography and Its Challenges 1
 1.1 Basics of Photolithography 2
 1.1.1 Resolution of the exposure system 3
 1.1.2 Step and scan 4
 1.2 Immersion Lithography and Its Advantages 5
 1.2.1 Depth-of-focus improvement 7
 1.2.2 Water as the immersion fluid 10
 1.2.3 Hyper-NA and high refractive index immersion (193i+) 10
 1.3 Challenges for the 193i Process 12
 1.3.1 Topcoat versus non-topcoat 13
 1.3.2 Immersion defectivity 14
 1.3.3 Imaging at hyper-NA 15
References 16

2 Process Steps in the Track 19
 2.1 Coating Module 19
 2.1.1 Material dispense 21
 2.1.2 Viscosity of materials 22
 2.1.3 Film thickness 22
 2.1.4 Reduction of material consumption 23
 2.1.5 Coating imperfections and defects 24
 2.1.5.1 Comets 24
 2.1.5.2 Striations 25
 2.1.5.3 Edge bead and backside contamination 26
 2.1.6 Material drying at the nozzle 28
 2.1.7 Alternative coating techniques 28
 2.2 Baking Module 29
 2.2.1 Temperature uniformity 30
 2.2.2 Temperature variation across the hotplate during thermal ramp 30
 2.2.3 Hotplates with temperature gradients 31
 2.2.4 Sublimation at high-temperature post-apply bakes 32
 2.2.5 Chemical flare during post-exposure bake 33
2.3 Development
- 2.3.1 Developer dispense 34
- 2.3.2 Optimization of development time 35
- 2.3.3 Deionized water rinse process 37

2.4 Resist Line Collapse and Corrective Measures 39
- 2.4.1 Mechanism of line collapse 39
- 2.4.2 Surfactant rinse to reduce line-collapse 41
- 2.4.3 Evaluation of the line-collapse process margin 42

2.5 Blob Defects 44
- 2.5.1 Reduction of blob defects by process optimization 45
- 2.5.2 Surfactant rinse to reduce blob defects 45

2.6 193-nm Immersion-Specific Track Process 46
- 2.6.1 Coating uniformity and stability 47
- 2.6.2 Particle count after coating 47
- 2.6.3 Across-wafer CD uniformity (CDU) 47
- 2.6.4 PEB plate matching 47
- 2.6.5 Developer cup matching 48
- 2.6.6 Batch trend evaluation 48

References 48

3 Resist Leaching and Water Uptake 53
3.1 Leaching Test Methods 53
- 3.1.1 Water extraction 54
- 3.1.2 Water sample analysis 55

3.2 Leaching Dynamics 56
- 3.2.1 Leaching dynamics described by the single-exponential model 56
- 3.2.2 Leaching dynamics described by the double-exponential model 56
- 3.2.3 Leaching specifications recommended by scanner suppliers 58
- 3.2.4 Comparing the saturation leaching results 58

3.3 Leaching with 193-nm Exposure 59

3.4 Pre-Rinse to Partially Remove Leached Contaminants 60

3.5 Lens Contamination Caused by Resist Leaching 61
- 3.5.1 Simulation results 62
- 3.5.2 Controlled immersion contamination 64
- 3.5.3 In situ cleaning of the immersion system 65

3.6 Water Uptake in Resist Film 67
- 3.6.1 Diffusion theory 67
- 3.6.2 Quartz crystal microbalance to measure water uptake 67

References 70
4 Contact Angle of Water on Resist Stacks 73
 4.1 Definition of Static and Dynamic Contact Angles 73
 4.2 Dynamics of the Water Meniscus 74
 4.3 Experimental Results from the Model Immersion Head 76
 4.4 Leakage Mechanism of the Water Meniscus 78
 4.5 Methods for Measuring Contact Angles 79
 4.5.1 Tilting wafer method 79
 4.5.2 Captive drop method 80
 4.5.3 Wilhelmy plate method 82
 4.5.4 Correlation between static and dynamic contact angles 82
 4.6 Process-Induced Contact Angle Variation 82
 4.6.1 Surface modification by exposure 83
 4.6.2 Surface modification by rinse liquid 84
References 84

5 Topcoat and Resist Processes for Immersion Lithography 87
 5.1 Selection of Developer-Soluble Topcoat 88
 5.1.1 Refractive index and thickness of topcoat 88
 5.1.2 Chemical compatibility of topcoat and resist 90
 5.1.3 Dissolution rate of developer-soluble topcoat in developer 93
 5.1.4 Advanced developer-soluble topcoats 95
 5.2 Lithographic Assessment of Developer-Soluble Topcoats with Resists 95
 5.2.1 Lithographic assessment 96
 5.2.2 Exposed resist loss by developer-soluble topcoat 100
 5.2.3 PEB delay of 193i process with developer-soluble topcoats 100
 5.3 Optimization of Developer-Soluble Topcoat Processes 101
 5.4 193i Resists without Topcoats 104
 5.4.1 Intrinsic topcoats: balancing immersion needs with high-resolution performance 104
 5.4.2 Resolution limits of resists 107
References 108

6 Immersion Defects and Defect-Reduction Strategies 111
 6.1 The Basics of Defect Detection 111
 6.1.1 ITRS defectivity requirements 112
 6.1.2 A systematic approach for identifying the sources of defects in the immersion process 113
 6.1.3 Particle per wafer pass test 113
 6.2 Quality of the Immersion Water 114
 6.3 Appearance of Bubble Defects 115
 6.3.1 Simulation results 115
 6.3.1.1 Floating bubbles 115
7.1.4.2 Control of blob defects 165
7.1.5 Etch rate of organic BARCs 165
7.2 Challenges to Antireflection Control for Hyper-NA Exposure 165
7.3 Spin-on Dual-Layer BARCs and Graded Spin-on BARCs 167
 7.3.1 Spin-on dual-layer BARCs 167
 7.3.2 Graded spin-on BARCs 170
7.4 Si-Containing BARC and Spin-on Carbon 171
 7.4.1 Process flow of the resist/Si-BARC/SOC trilayer 171
 7.4.2 Consideration of antireflection control 174
 7.4.3 Etch selectivity 175
 7.4.4 Resist compatibility and the tetralayer approach 176
 7.4.5 Storage stability and solvent rework capability 177
 7.4.6 Thick Si-BARC (‘etch screw’) process 178
7.5 Gap-Fill Materials 179
 7.5.1 Process flow of gap-fill materials 181
 7.5.2 Evaluation of filling capability 183
 7.5.3 Chemical compatibility and etch rate 184
7.6 Top Antireflection Coatings (TARCs) 184
 7.6.1 Optical performance of TARC films 185
 7.6.2 Chemical compatibility and coating issues 185
 7.6.3 Absorbing TARCs 186
7.7 Developer-Soluble BARCs (DBARCs) 187
 7.7.1 Nonphotosensitive DBARCs 187
 7.7.2 Photosensitive DBARCs 188
 7.7.2.1 Photospeed match with resist 188
 7.7.2.2 Chemical compatibility 189
References 189

8 Resist Shrink and Trim Processes 193
 8.1 Resist Thermal Reflow 194
 8.1.1 Behavior of thermal reflow 194
 8.1.2 Reflow bake temperature 197
 8.1.3 Optical proximity correction (OPC) for thermal reflow 197
 8.2 Chemical Shrink 198
 8.2.1 Shrinkage behavior 199
 8.2.2 Defectivity issues 202
 8.3 Shrink Assist Film for Enhanced Resolution (SAFIER) 203
 8.4 Shrinking via Fluorination Process 204
 8.5 Shrinking via Silylation Process 205
 8.6 Plasma-Assisted Shrink 207
 8.7 Evaluation of Shrink Processes 210
 8.8 Trim Processes 210
References 211
9 Double Exposure and Double Patterning

9.1 Introduction

9.1.1 Double exposure (DE)
9.1.2 Double patterning (DP)
9.1.3 Resolution capability of DE/DP
9.1.4 Challenges

9.2 Double Exposure with One Resist Layer

9.2.1 Combination of interference and projection (regular) lithography
9.2.2 Exposures with X-dipole and Y-dipole illuminations
9.2.3 Image-assisted double exposure
9.2.4 Other approaches

9.3 Double Exposure with Two Full Lithographic Processes

9.3.1 Double exposure with positive and negative resists
9.3.2 Freezing of the 1st resist pattern
 9.3.2.1 Freezing technique with a surface-protecting layer
 9.3.2.2 Freezing technique with thermal cross-link resist
 9.3.2.3 Other “freezing” approaches
9.3.3 Pack and unpack (PAU) for printing contacts

9.4 Double Patterning

9.4.1 Double trench patterning
9.4.2 Double line patterning
9.4.3 Si-containing resists used as the 2nd resist in double line patterning
 9.4.4 Si-BARC film as a hard mask for double patterning

9.5 Self-Aligned Double Patterning

9.6 Novel Approaches

9.7 Additional Comments

References

10 Line-Edge Roughness of Resist Patterns

10.1 Metrology of Line-Edge Roughness (LER) and Line-Width Roughness (LWR)

10.1.1 LER
10.1.2 LWR
10.1.3 Relationship between LER and LWR
10.1.4 Correlation length of the roughness
10.1.5 Spatial frequency spectrum

10.2 Formation of LER

10.2.1 LER of the mask pattern
10.2.2 Aerial image contrast at the pattern edge
10.2.3 LER generation in positive chemically amplified (CA) resists
11 Extendibility of 193-nm Immersion Lithography

11.1 Fluids with High Refractive Indices
 - 11.1.1 Requirements for high-RI fluids
 - 11.1.2 Measuring the RI of immersion fluids
 - 11.1.3 Development of high-RI fluids
 - 11.1.4 Leaching and contact angle

11.2 Materials with High Refractive Indices

11.3 Resists with High Refractive Indices
 - 11.3.1 Development of high-RI resists
 - 11.3.2 Aerial image improvements with high-RI material

11.4 Solid Immersion

11.5 Other 193i+ Topics
 - 11.5.1 Polarization control of exposure light
 - 11.5.2 Reticle-induced polarization

References

Index
Preface

The benefits of using liquids in optical microscopes were first demonstrated in the 1880s. A century later, in the 1980s, experiments with immersion technology demonstrated its potential for use in modern lithography. In 2002, when 157-nm lithography was delayed by a host of technical problems, the development of 193-nm immersion lithography for use in fabricating integrated circuits gained momentum. The development of 193-nm immersion lithography (193i) occurred much faster than did any previous lithographic technology. Currently, 193i is widely used to manufacture advanced microelectronic devices at the 45-nm node. The entire transition from proof of concept to delivery of a mass production tool took only about four years.

This rapid growth was possible because of the combined efforts of all sectors of the lithography community, including the manufacturers of scanners, materials, and integrated circuits. Much of the research critical to the rapid advancement of 193i has been published in the last few years in various journals and proceedings. One of the goals of this book is to summarize this information so that those new to the field as well as current practitioners may increase their understanding of this important technology.

Thus, while actively involved in evaluating new materials, equipment, and processes for 193i imaging, Yayi Wei began writing the manuscript for this book. During the summer of 2008, Robert Brainard, a researcher developing new resist materials, joined Yayi as his coauthor to help prepare the manuscript. Their collaboration resulted in this timely monograph that presents the knowledge critical for establishing high-yield cost-effective 193i processes and materials. The text can be used as course material for graduate students of electrical engineering, material sciences, physics, chemistry, and microelectronics engineering. It can also be used to train engineers involved in the manufacture of integrated circuits.

A large portion of this book is concerned with the challenges and opportunities of water-based 193-nm immersion lithography. The first chapter provides a broad overview of 193i lithography. The second chapter describes the track where most of the processes occur. The book continues with descriptions of the interactions between the immersion fluid (water) and the resist in terms of contact angle, leaching of resist components, and topcoats. It also provides a comprehensive summary of various immersion-related defects and defect-reduction strategies. It covers topics that were originally developed in “dry” lithography and are extendable to immersion 193-nm lithography, discussing
strategies for antireflection control, shrink processes, trim processes, double exposure, double patterning, and line-edge roughness. The book concludes with a chapter describing research efforts aimed at further extensions of immersion lithography to higher numerical aperture (NA) and resolution through the development of high-index lithography. Discussion of some topics (e.g., optical theory of hyper-NA) was kept brief when well described in other monographs.

The knowledge of 193i is still growing and will continue to mature as it is used more frequently in mass production. We appreciate any suggestions from our readers on how to update this material. Your input will help us improve subsequent editions of this book.

Yayi Wei
Altamont, New York

Robert L. Brainard
College of Nanoscale Science and Engineering
University at Albany, State University of New York

January 2009
Acknowledgments

Without a doubt, the knowledge presented in this book was collectively generated by the entire lithography community. The authors would like to express their sincere gratitude to the individuals in this community who provided enormous support during preparation of the manuscript, both by sharing their most recent results and by suggesting improvements to the content and organization of the material. Many of the figures in this book are direct reprints from their publications.

We are especially grateful to David Back, Stefan Brandl, Frank Goodwin, Antje Laessig, Brian Martinick, Michael Sebald, Nickolay Stepanenko, and Lars Voelkel of Qimonda, Karen Petrillo and Chris Robinson of IBM, Peter Benson and Rich Housley of Micron, Uzo Okoroanyanwu and Harry Levinson of AMD, Michael Tittnich of Albany Nanotech, and Ralph Dammel of AZ Electronic Materials. We also thank Dara Burrows and Tim Lamkins of SPIE Press for their patience and encouragement. The authors particularly thank Lisa C. Brainard and Chien-Hsien Sam Lee for the many hours of expert help in editing and revising the various drafts of this book.
List of Acronyms and Abbreviations

193i 193-nm immersion lithography
193i+ high refractive index 193-nm immersion lithography
α absorption coefficient
a-C amorphous carbon
AFM atomic force microscope
alt. PSM alternating phase-shift mask
ARC antireflective coating
ArF argon fluoride
att. PSM attenuated phase-shift mask
BARC bottom antireflection coating
BEOL back end of line
BIM binary intensity mask
CA contact angle
CAR chemically amplified resist
CARL chemical amplification of resist lines
CD critical dimension
CDU critical dimension uniformity
CGS centimeter-gram-second system
CMP chemical-mechanical planarization
CNAR critical normalized aspect ratio
C-SOH carbon spin-on hard mask
CVD chemical vapor deposition
DBARC developer-soluble BARC
DE double exposure
DI deionized
DIW deionized water
DLP dynamic leaching procedure
DOE design of experiment
DOF depth of focus
DP double patterning
DRAM dynamic random access memory
DUV deep ultraviolet
E0 dose to clear
EBR edge bead removal
EDX energy dispersive x-ray spectrometry
EL exposure latitude
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCA</td>
<td>electron spectroscopy for chemical analysis</td>
</tr>
<tr>
<td>EUV</td>
<td>extreme ultraviolet</td>
</tr>
<tr>
<td>F<sub>2</sub></td>
<td>fluorine</td>
</tr>
<tr>
<td>FCCD</td>
<td>first collapse critical dimension</td>
</tr>
<tr>
<td>FEM</td>
<td>focus exposure matrix</td>
</tr>
<tr>
<td>FEOL</td>
<td>front end of line</td>
</tr>
<tr>
<td>FIB</td>
<td>focused ion beam</td>
</tr>
<tr>
<td>FOV</td>
<td>field of view</td>
</tr>
<tr>
<td>FT</td>
<td>film thickness</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>GBARC</td>
<td>graded bottom antireflection coating</td>
</tr>
<tr>
<td>GIS</td>
<td>gas injector system</td>
</tr>
<tr>
<td>HF</td>
<td>hydrofluoric acid</td>
</tr>
<tr>
<td>HM</td>
<td>hard mask</td>
</tr>
<tr>
<td>HMDS</td>
<td>hexamethyldisilizane</td>
</tr>
<tr>
<td>IBR</td>
<td>intrinsic birefringence</td>
</tr>
<tr>
<td>IC</td>
<td>integrated circuit</td>
</tr>
<tr>
<td>IL</td>
<td>interferometric lithography</td>
</tr>
<tr>
<td>i-line</td>
<td>365-nm wavelength lithography</td>
</tr>
<tr>
<td>ILS</td>
<td>image log-slope</td>
</tr>
<tr>
<td>IMR</td>
<td>intrinsic material roughness</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>ITRS</td>
<td>International Technology Roadmap for Semiconductors</td>
</tr>
<tr>
<td>KrF</td>
<td>krypton fluoride</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>LC-MS</td>
<td>liquid chromatography mass spectroscopy</td>
</tr>
<tr>
<td>LER</td>
<td>line-edge roughness</td>
</tr>
<tr>
<td>LWR</td>
<td>line-width roughness</td>
</tr>
<tr>
<td>MB</td>
<td>mixing bake</td>
</tr>
<tr>
<td>MEEF</td>
<td>mask error enhancement factor</td>
</tr>
<tr>
<td>Mw</td>
<td>molecular weight</td>
</tr>
<tr>
<td>NA</td>
<td>numerical aperture</td>
</tr>
<tr>
<td>NAR</td>
<td>normalized aspect ratio</td>
</tr>
<tr>
<td>NILS</td>
<td>normalized image log-slope</td>
</tr>
<tr>
<td>NR</td>
<td>neutron reflectometry</td>
</tr>
<tr>
<td>OAI</td>
<td>off-axis illumination</td>
</tr>
<tr>
<td>OL</td>
<td>overlay</td>
</tr>
<tr>
<td>OPC</td>
<td>optical proximity correction</td>
</tr>
<tr>
<td>OPD</td>
<td>optical path difference</td>
</tr>
<tr>
<td>PAB</td>
<td>post-apply bake</td>
</tr>
<tr>
<td>PAG</td>
<td>photoacid generator</td>
</tr>
<tr>
<td>PDB</td>
<td>post-develop bake</td>
</tr>
<tr>
<td>PEB</td>
<td>post-exposure bake</td>
</tr>
<tr>
<td>PGME</td>
<td>propylene glycol monomethyl ether</td>
</tr>
<tr>
<td>PGMEA</td>
<td>propylene glycol monomethyl ether acetate</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>POR</td>
<td>process of record</td>
</tr>
<tr>
<td>POU</td>
<td>point of use</td>
</tr>
<tr>
<td>ppb</td>
<td>parts-per-billion</td>
</tr>
<tr>
<td>ppt</td>
<td>parts-per-trillion</td>
</tr>
<tr>
<td>PSD</td>
<td>power spectral density</td>
</tr>
<tr>
<td>PSZ</td>
<td>perhydropolysilazane</td>
</tr>
<tr>
<td>PW</td>
<td>process window</td>
</tr>
<tr>
<td>PWP</td>
<td>particles per wafer pass</td>
</tr>
<tr>
<td>QCM</td>
<td>quartz crystal microbalance</td>
</tr>
<tr>
<td>QSPR</td>
<td>quantitative structure property relationship</td>
</tr>
<tr>
<td>RCA</td>
<td>receding contact angle</td>
</tr>
<tr>
<td>RDA</td>
<td>resist development analyzer</td>
</tr>
<tr>
<td>RELACS</td>
<td>resolution enhancement lithography assisted by chemical shrink</td>
</tr>
<tr>
<td>RI</td>
<td>refractive index, (n)</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean square</td>
</tr>
<tr>
<td>rpm</td>
<td>rotation per minute</td>
</tr>
<tr>
<td>SA</td>
<td>swing amplitude</td>
</tr>
<tr>
<td>SADP</td>
<td>self-aligned double patterning</td>
</tr>
<tr>
<td>SAFIER</td>
<td>shrink assist film for enhanced resolution</td>
</tr>
<tr>
<td>SBR</td>
<td>stress birefringence</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>Si-BARC</td>
<td>silicon-containing bottom antireflection coating</td>
</tr>
<tr>
<td>SIMS</td>
<td>secondary-ion mass spectroscopy</td>
</tr>
<tr>
<td>Si-SOH</td>
<td>silicon spin-on hard mask</td>
</tr>
<tr>
<td>SOC</td>
<td>spin-on carbon</td>
</tr>
<tr>
<td>SSQ</td>
<td>silsesquioxane</td>
</tr>
<tr>
<td>SWA</td>
<td>sidewall angle</td>
</tr>
<tr>
<td>TARC</td>
<td>top antireflective coating</td>
</tr>
<tr>
<td>TC</td>
<td>topcoat</td>
</tr>
<tr>
<td>TE</td>
<td>transverse electric</td>
</tr>
<tr>
<td>(T_g)</td>
<td>glass transition temperature</td>
</tr>
<tr>
<td>TGP</td>
<td>thermal gradient plate</td>
</tr>
<tr>
<td>TM</td>
<td>transverse magnetic</td>
</tr>
<tr>
<td>TMAH</td>
<td>tetramethylammonium hydroxide</td>
</tr>
<tr>
<td>TOF-SIMS</td>
<td>time of flight–secondary-ion mass spectroscopy</td>
</tr>
<tr>
<td>UCP</td>
<td>ultra-casting predispense</td>
</tr>
<tr>
<td>UPW</td>
<td>ultrapure water</td>
</tr>
<tr>
<td>VUV</td>
<td>vacuum ultraviolet</td>
</tr>
<tr>
<td>WEE</td>
<td>wafer edge exposure</td>
</tr>
<tr>
<td>WEXA</td>
<td>water extraction and analysis</td>
</tr>
<tr>
<td>WM</td>
<td>watermark</td>
</tr>
<tr>
<td>XPS</td>
<td>x-ray photoelectron spectroscope</td>
</tr>
</tbody>
</table>