Index

γ, 75

157-nm, 166
157-nm lithography, 422
193-nm, 166
1D features, 119
2D features, 119
2nd-order component, 54

A, B, C coefficients, 68
aberrated wavefront, 36
absorption
  coefficient, 189
  distribution, 64
  effect, 187
active compensation, 317
adhesion, 239, 251
advancing contact angle, 378
aerial image, 29
  measurement system (AIMS), 149
after-etch image, 308
air
  bubbles, 371, 376
  gauge, 224
  knife, 392
alignment
  accuracy, 204
  mark, 204
all-reflective, 11
  system, 161
alternating phase-shifting mask
  (AltPSM), 143, 144, 151, 253, 277, 285, 287
amine, 252
anisotropic etch, 88, 184
anisotropical, 167
antireflection coating (ARC), 2, 190, 215
  bottom (BARC), 3, 190, 351
  top (TARC), 3, 190, 347
aperture
  limited, 30
  ratio, 46
ArF, 136
astigmatism, 40, 165
attenuated phase-shifting mask
  (AttPSM), 44, 144, 154, 159, 262
available DOF, 329, 381, 418
AZ1350, 179
azide, 173
backscattering, 443
bandwidth
  narrowing, 140
  requirement, 137
base polymer, 171
baseline distance, 205
basis functions, 313, 318
beamsplitter, 18, 163, 204
Bessel function, 46
best focus, 220
BigMaC, 56, 245
  mask, 280
binary
  complex mask (BCM), 144
  intensity mask (BIM), 143, 151, 158
  mask, 143
  phase mask (BPM), 144
blanket exposure, 179
bleaching, 181
Bossung curve, 225
bottom
  antireflection coating (BARC), 3, 190, 351
  layer, 177
boundary matrix, 192
Brewster angle, 347
bright field, 207
broadband, 13
bubbles, 182, 372, 375, 378, 391
bulk imaging, 175
bull’s-eye illumination, 270

CaF₂, 166, 388
capacitive gauge, 224
capillary pull, 251
capping layer, 429
CAR, 317
catadioptric
  lens, 163
  system, 161
critical dimension
  centered (CDC), 113
  optimizer, 317
  range (CDR), 113
  uniformity (CDU), 309
    improvement, 316
central scattering bars (CSB), 289
chain scission, 170
chemical mechanical polishing (CMP), 296
chemically amplified resist (CAR), 174, 252
child molds, 461
chip, 11
chromatic aberration, 137, 162
chrome
  masks, 9
    on glass (COG), 143
chromium, 145
coherent
  imaging, 41
  length, 151
coma, 40, 165
common
  E-D region, 100
  window, 221
complex index of refraction, 199
centric mirror, 13
conformal deposition, 89
conic mating wedges, 142
constant
  edge-position contours, 99
  line-width contour, 101
contact angle, 371, 378
contamination, 437
contrast enhancement resists, 64
conversion efficiency, 428
covered phase-shifting (CPS) edge, 155, 158
C-Quad illumination, 270
critical-dimension uniformity (CDU), 309
  improvement, 316
crosslinking, 171
crystal axis, 202
cyclized rubber, 173

$D_{e,f}$, 76
dark-field alignment, 206, 207
data rate, 456
deep submicrometer, 16
deep UV, 9, 14, 133
  lithography, 144
defect, 9, 11
  defect source, 240
depth of focus (DOF), 4
  diffraction, 329, 334
    required, 329, 334
developed
  image, 67, 188
  resist image, 249
development effect, 187
diazoquinone
  novolak, 184
  sensitized novolak (DQN), 171, 175
Index

diazoquinone (continued)
sensitized novolak resist, 247
sensitizer, 171
die-to-database inspection, 11
die-to-die inspection, 11
diffraction DOF, 329, 334, 381, 418
diffraction-limited, 30
image, 36
system, 29
diffusion, 175
dioptric system, 161
dipole illumination, 271
directly sum, 315
discharge-produced plasma (DPP), 426
disk illumination (DKI), 217, 270, 276, 277
dissections, 303
dissolution rate, 167, 171
distribution, 65
distortion, 165
depth of focus (DOF), 10, 149
budget, 222
consumed, 222
provided, 222
DOF$_{\text{avail}}$, 329, 381, 418
DOF$_{\text{diffrac}}$, 329, 334, 381, 418
DOF$_{\text{required}}$, 329, 334, 382
sin$\theta$ curves, 380
double
exposure, 157, 256
patterning, 459
telecentric lens system, 147
double-dipole illumination (DPL), 271
dyeing, 86, 181

e95, 137, 138
e-beam
directwrite, 23
proximity effects, 443
E-D, 5
branches, 99
electrical E-D windows, 110
E-D (continued)
forest, 106
region, 99
tools, 95
tree, 99, 101, 213
window, 144, 146, 213, 220
rectangular, 110
edge
bead, 240
contrast, 152
correction, 298
placement, 99
scattering bars (ESB), 289
eigenfunctions, 301
EL-versus-DOF curves, 111
electric
field, 31
power, 438
electron-beam lens array (EBLA), 448
electroplating, 91
elliptical E-D windows, 110
emulsion mask, 9
absorber, 145
environmental chamber, 166
etalons, 139
etch, 1, 7, 22
evanescence waves, 354
excimer laser, 133, 136, 139
lifetime, 141
maintenance, 141
safety interlocks, 140
exposure
center, 221
field size, 11
scanning time, 231
system, 7
time, 231
tools, 213
exposure defocus (E-D), 5
branches, 99
elliptical E-D windows, 110
forest, 106
region, 99
tools, 95
exposure defocus (continued)
  tree, 99, 101, 213
  window, 144, 146, 213, 220
exposure gap (E-G), 8
exposure latitude (EL), 4
versus-DOF curves, 111
extreme ultraviolet (EUV), 163, 418
  resists, 438
F₂, 136
fabrication tolerance, 257
field size, 7, 160, 372, 377
field-by-field alignment, 206
field-emitter array (FEA), 447
film nonuniformity, 223
flare, 167
flat, 202
flatness variation, 151
FLEX system, 64
focal center, 221
focal plane–optical proximity correction (FP-OPC), 306
focus sensing, 224
focusing error, 224
forward scattering, 443
Fourier
  integral, 47
  transform, 42, 46
Fresnel
  approximation, 8
  formulae, 346
  number, 8
full depth–optical proximity correction (FD-OPC), 306
full-size scattering bar (FSB), 292
full-wafer field exposure system, 7, 11
full-width half-maximum (FWHM), 137
fused silica, 136, 145
  g-line system, 135
gate length, 158
ghost lines, 169
global alignment, 206
  glues, 167
  gratings, 139
  gray levels, 144
  heat, 424, 428, 437, 439, 441, 453
  hexamethyldisilazane (HMDS), 239
  hierarchy, 303
  higher-index
    coupling fluid, 401
    materials, 401
  higher-order spatial frequencies, 54
  h-line system, 135
  hollow subresolution scattering bar (HSSB), 294
  homogeneous wave equation, 199
  Hopkins, 45
  hot plate, 314, 317
  hydrogen silsesquioxane (HSQ), 444
  hydrophilic, 393
  i-line system, 135
  illuminator, 141
  image plane deviation, 222
  imaging lens, 159
  immersion
    developing, 249
    fluids, 325
    hood (IH), 392
    lithography, 323, 325
    microscopy, 325
  implant, 7
  incoherent imaging, 44
  indene, 175
  indenecarboxylic acid, 171, 175
  index of refraction, 181
    complex, 199
  interferometer, 204
  interferometric lithography, 325
  interfield signature, 311
  inverse Fourier transform, 42, 47
ion
  implantation, 1, 184
  stopping mask, 167
isotropic etch, 87, 184
isotropical, 167

$k_1$, 95, 97
  low, 213
  reduction, 252
$k_2$, 35, 96
$k_3$, 95, 97
kernel, 44, 300
KMER, 173
Köhler illumination system, 141, 142
KPR, 173
KrF, 136
KTFR, 173

laminar flow, 376
Langmuir-Blodget, 239
laser speckles, 139
laser-produced plasma (LPP), 426
latent image, 64, 177, 184, 187
Legendre polynomials, 312
lens
  aberration, 165
  distortion, 4
lens-based configuration (LBC), 367, 398
Li, 427
lift off, 1, 7, 89, 184
  mask, 167
light
  frequency, 324
  rays, 29
  source, 133
  velocity, 324
  waves, 29
line-edge roughness (LER), 175
line-end shortening, 295
linewidth
  derived (LWD), 79
    LWD-β, 84
  roughness (LWR), 440
local dosage–optical proximity correction (LD-OPC), 304
log slope, 57
long micrometer, 16
low $k_1$, 213
low-contact-area vacuum chucks, 203
low-pass filter, 47, 53
lumped parameter model (LPM), 71, 266
LWD-β, 84

magnetic field, 31
MAPPER, 444
mask, 1
  absorber, 145
  bias, 146
  blank, 143
  error enhancement factor (MEEF), 23, 252, 265
flatness, 149, 222, 435
reflectivity, 147
sagging, 18
substrate, 144
transmission function, 46
masking level, 2
mask-to-wafer distance, 9
gap, 8, 9
mating wedges, 142
matrix formulation, 192
mechanical shock, 166
MEEF, 23, 252, 265
mercury
  arc lamp, 133
  line, 9
metal-oxide semiconductor (MOS), 158
microchannel amplifier (MCA), 447
microloading, 296, 308
microscopy, 97
mid-UV, 9, 133
middle layer, 177
midmicrometer, 16
minimum printable feature size, 11
mirror, 12
  image, 10, 13
  scheme, 13
misnomer, 143
model-based OPC, 299
molecular weight, 170
MoSi, 262
MoSi2, 145
multibeam systems, 450
multilayer
  resist systems, 215
  stack, 422, 428
multilevel
  intensity mask (MIM), 144
  phase mask (MPM), 144
multiple
  exposure, 391
  illumination, 217
  reflection, 63, 182, 185, 192

O2 RIE, 177
off-axis
  alignment, 205
  illumination (OAI), 142, 268,
  275, 285
one-component
  negative resist, 171
  positive resist, 170
onium salt sensitizer, 174
optical
  CD (OCD) metrology, 230
  lithography galaxy, 417
  proximity correction (OPC), 294
  proximity effect (OPE), 295
optimum
  σ, 218
  NA, 213
outgasses, 167, 182, 378
overcut, 189
  profile, 66, 80, 187
overlay
  accuracy, 204
  budget, 23

pack-and-seal technique, 385
pack-unpack, 406
paraxial, 11
partial coherent light, 269
partially coherent, 45
particulate, 167
pattern
  shadowing, 440
  transfer, 7
PBOCST, 174
pellicle, 10, 145, 436
permeability, 199
permittivity, 199
phase
  error, 130
  grating focus monitor, 228
  shift focus monitor, 227
phase-shifted edge (PS edge), 144,
  155

nanoimprint, 461
near UV, 133, 163
negative resist, 168, 174, 187
nitrene, 173
nonpolar solvent, 174
nonuniform exposure, 187
no-PDS (NPDS), 358
normalized feature size, 99
notch, 202
numerical aperture (NA), 4, 31, 48,
  159
  at the mask side, 31
  NA/σ combinations, 117
numerical half aperture (NHA), 35,
  328
phase-shifting
  conflicts, 257
  mask (PSM), 143, 150, 253
    subresolution-assisted (SA PSM), 154, 294
PHOST, 174
photoacid, 378
generator, 378
photomask(mask), 142
photon energy, 324, 442
photoresist, 145
phototransfer resist system, 179
pitch splitting, 419
placement
  error, 129, 146
  tolerance, 23
plating, 7
polar solvent, 174
polarization
  dependent stray light (PDS), 340, 350
    effects, 325
polarized, 139
polarizing beamsplitter, 164
polychromatic illumination, 206
polymethylmethacrylate (PMMA), 179, 247, 445
portable conformable mask, 179
positive resist, 168, 174, 187
postapplication bake, 2, 244
postdevelopment bake, 243
postexposure bake (PEB), 2, 174, 184, 198, 243, 245
Poynting
  theorem, 197
  vector, 196
precoating bake, 243
pre-exposure bake, 243
prisms, 139
programmed defect mask (PDM), 149
propagation
  angle, 48
  matrix, 192
protons, 174
proximity
  dispense-in-vapor, 242
  printing system, 7
PSM, 143, 150, 253
  subresolution-assisted (SA PSM), 154, 294
puddle developing, 249
pupil function, 44
quadrupole, 270, 279
  illumination (QRI), 277, 283, 287, 292
quartz, 144
radiation
  induced damage, 140
  spectrum, 133
random phase shifting, 430
rate image, 188
reactive ion etching (RIE), 177
  O₂, 177
  transfer resist system, 177
receding contact angle, 378
rectangular E-D window, 110
reduction
  of spatial frequencies, 152
  ratio, 24, 161
  step-and-repeat, 7
  step-and-scan systems, 7
reflected e-beam lithography (REBL), 451
reflection, 4, 253
  variation, 187
refracted image, 67, 188
refractive index, 323, 369, 379
  distribution, 64
repeating defects, 145
required DOF, 329, 334, 382
resist
  bleaching, 86
  coating, 2, 238
  collapse, 251
  development, 2
resist (continued)
  hardening, 3
  thickness, 186, 222, 239
resolution, 10
  enhancement technique (RET), 253
  scaling equation, 95, 213
restricted pitch, 289
reticle, 16
RIE-transfer resist system, 177
rim PSM, 154, 262
ring field, 12
ring illumination (RGI), 270, 276, 287
ripples, 283
root-sum-square, 315
rule-based OPC, 298

scattering bars (SB), 288
  central (CSB), 289
  edge (ESB), 289
  full-size (FSB), 292
  hollow subresolution (HSSB), 294
  subresolution (SSB), 288, 292
scatterometric CD (SCD)
  metrology, 230
seal ring, 398
Seidel
  aberration coefficients, 36, 165
sensitizer, 171
short submicrometer, 16
shrinkage, 170
Signamizer, 356, 417
silica, 136
silylation, 177
SiO₂, 166
slit, 18, 163, 424
slot, 18, 424
Snell’s law, 326
solid
  angle, 31
  immersion mask, 402
  space-charge effect, 443
  spatial
  coherence, 139
  frequency, 47, 50, 253, 268, 271, 285, 294
special routing, 394
speckles, 136
spherical, 40
  aberration, 165, 330
  wavefront, 29
spin coating, 238
spontaneous emission, 136
spray developing, 250
spray-and-spin-in-vapor, 241
stage acceleration, 231
standing waves, 183
step-and-repeat, 14
  and-scan, 18, 325
stepping time, 231
stimulated emission, 136
stray
  light, 167, 185, 419, 436, 440
  reflection, 147
striation, 240
strong phase-shifting scheme, 156
subresolution-assisted phase-shifting mask (SA PSM), 152, 154, 294, 294
subresolution scattering bar (SSB), 288, 292
substrate reflection, 185
system stray light (SSL), 340
target point, 302
t-BOC, 174
telecentric, 161
  lens system, 147
temporal coherence, 139
thermal expansion coefficient, 144, 147
third-order beam shaping, 450
three-beam
  imaging, 343
  interference, 353
Index

three-layer system, 177
threshold leveling, 304
throughput, 231
through-the-lens alignment, 205
tin, 427
top antireflection coating (TARC),
  3, 190, 347
topcoat, 379
topography, 177, 187
top-surface imaging (TSI), 177
transfer function, 300
transmission
  error, 130
  function, 44
transverse electric (TE), 42, 341, 347, 348, 383, 403
transverse magnetic (TM), 42, 340, 347, 348, 403
twin stage, 236
two-beam interference, 353
two-component
  negative resists, 173
  positive resist, 171
two-layer system, 177

undercut profile, 89
unpolarized, 43
UttPSM, 157

vacuum wavelength, 51, 324
vibration, 253
viscosity, 370

wafer
  backside, 398
  chuck, 202
  edge, 398
  flatness, 4, 202, 223
  stage, 202
wafer-based configuration (WBC), 368
wall power, 438, 441, 456
wave number, 30
wavefront interferometer, 166
wavelength
  of electrons, 442
  reduction, 4
weak phase-shifting scheme, 156
working distance, 9, 11, 161

x ray, 2
  proximity printing, 9, 422

Zernike
  aberration coefficients, 38
  polynomials, 38, 165, 312
Burn J. Lin has been a senior director at TSMC, Inc., since 2000. He has been the president of Linnovation, Inc., since 1992. Prior to that, he held various technical and managerial positions in the field of microlithography at IBM. He has been extending the limits of optical lithography for close to four decades.

Dr. Lin is the Editor in Chief of the Journal of Micro/Nanolithography, MEMS, and MOEMS, a member of the U.S. National Academy of Engineering, an IEEE Life Fellow, an SPIE Fellow, and a visiting professor at the National Taiwan University. He is the recipient of the 2009 IEEE Cledo Brunetti Award, 2009 Benjamin G. Lamme Meritorious Achievement Medal, 2007 Industrial Technology Advancement Award, 2006 Distinguished Optical Engineering Award, 2005 Most Valuable Player in VLSI Research Inc.’s All-Stars of the Chip Making Industry, 2005 Two Best R&D Managers in Taiwan, 2004 Outstanding Research Award from PWY Foundation, 2004 1st recipient of SPIE Fritz Zernike Award, 2003 Outstanding Scientific and Technological Worker Award, and 2002 Ten Best Engineers in Taiwan. Throughout his career, he received 2 TSMC Innovation Awards, 10 IBM Invention Awards, and an IBM Outstanding Technical Contribution Award.


He has written 2 book chapters, published over 100 mostly first-authored articles, and has more than 50 U.S. patents.