Chemistry and Lithography
Chemistry and Lithography

Uzodinma Okoroanyanwu
Dedicated to the memory of the late Professor William C. Gardiner, Jr.,
of The University of Texas at Austin, under whom I studied.
Contents

Preface xxi
Acronyms and Abbreviations xxv

Part I: Origins, Inventions, and the Evolution of Lithography 1

1 Introduction to Lithography 3

2 Invention of Lithography and Photolithography 9
 2.1 Introduction 9
 2.2 Invention of Lithography 11
 2.3 Invention of Photolithography 17
 2.4 Pioneers of Photography 18
 2.4.1 Joseph Nicéphore Niépce—The inventor of photography and photolithography 19
 2.4.2 Louis Jacques Mandé Daguerre 25
 2.4.3 William Henry Fox Talbot 26

3 Optical and Chemical Origins of Lithography 29
 3.1 Introduction 29
 3.2 Key Developments that Enabled the Invention and Development of Lithography 33
 3.2.1 Developments in optical physics 33
 3.2.1.1 Tactile and emission theories of light 33
 3.2.1.2 Early studies in optics and catoptrics 34
 3.2.1.3 On the nature of light 38
 3.2.1.4 Electromagnetic theory 50
 3.2.1.5 Electromagnetic spectrum 55
 3.2.1.6 Absorption of light 58
 3.2.1.7 Chemical effects of light 58
 3.2.1.8 The discovery of electrons 61
 3.2.1.9 The discovery of x rays 62
 3.2.1.10 Radioactivity 63
3.2.1.11 The beginnings of quantum theory 64
3.2.1.12 Molecular theory of matter 65
3.2.1.13 Blackbody radiation 66
3.2.1.14 Planck’s quantum hypothesis for blackbody radiation 67
3.2.1.15 Einstein’s quantum hypothesis for the photoelectric effect 69
3.2.1.16 Bright and dark line spectra 71
3.2.1.17 Nuclear model of the atom 74
3.2.1.18 Bohr’s model of the hydrogen atom 75
3.2.1.19 Implications of Bohr’s theory 78
3.2.1.20 Quantum theory of light 79
3.2.1.21 Einstein’s theory of relativity 83
3.2.2 Developments in optical instruments and glassmaking technologies 85
3.2.3 Developments in chemistry 95
3.2.3.1 The four-element theory 95
3.2.3.2 Chemistry as a distinct discipline 97
3.2.3.3 Alchemy 98
3.2.3.4 Early theories of combustion and calcination 99
3.2.3.5 Phlogiston theory 100
3.2.3.6 Discovery of simple gases in common air 102
3.2.3.7 Foundation of modern chemistry 104
3.2.3.8 Post-Lavoisian evolution of chemistry 109
3.2.3.9 Development of various fields in chemistry 117
4 Evolution of Lithography 137
4.1 Introduction 137
4.2 Offset Lithography 141
4.3 The Printed Circuit Board and the Development of the Electronics Industry 142
4.4 The Transistor and Microelectronics Revolution 145
4.4.1 The invention of the transistor 145
4.4.2 Limits of discrete transistors 147
4.5 The Integrated Circuit 148
4.6 Other Notable Developments in Transistor Technology 148
4.7 Overall Device Technology Trends 152
4.8 Semiconductor Lithography 157
4.8.1 Optical lithography 160
4.8.2 Challenges of decreasing exposure wavelength in optical lithography 165
4.9 X-ray Lithography 165
4.10 Electron-Beam Lithography 167
4.11 Ion-Beam Lithography 169
4.12 Extreme Ultraviolet Lithography 170
4.13 Soft Lithography
4.13.1 Microcontact printing
4.13.2 Micromolding in capillaries
4.13.3 Nanoskiving
4.13.4 Step-and-flash imprint lithography
4.13.5 Nanoimprint lithography
4.14 Proximal Probe Lithography
4.15 Atom Lithography
4.16 Stereolithography
4.17 Molecular Self-Assembly Lithography

Part II: Lithographic Chemicals

5 Lithographic Chemicals
5.1 Introduction
5.2 Resists
5.2.1 Resist solvents
5.2.2 Manufacture of resists
5.3 Antireflection Coatings
5.4 Resist Developers and Rinses
5.5 Resist Strippers and Cleaners
5.6 Offset Lithographic Inks and Fountain Solutions
5.6.1 Offset lithographic inks
5.6.2 Fountain solutions

6 Negative Resists
6.1 Introduction
6.2 Resins
6.3 Types of Negative Resists
6.3.1 Non-radiation-based negative resists
6.3.1.1 Wax-lampblack-soap resists
6.3.2 Radiation-induced negative resists
6.3.2.1 Negative resists based on radiation-induced cross-linking reactions
6.3.3 Chemically amplified cross-linking negative resists
6.3.3.1 Chemically amplified negative phenolic resists based on acid-catalyzed condensation/intermolecular dehydration cross-linking reactions
6.3.3.2 Chemically amplified negative resists based on radiation-induced polarity changes
6.3.4 Non-chemically amplified negative resists based on radiation-induced polarity changes
6.3.4.1 Metal-chalcogenide resists
6.3.4.2 Ylide resists 232
6.3.4.3 Diazo resists 233
6.3.5 Chemically amplified negative resists based on radiation-induced polarity changes 234
6.3.5.1 Chemically amplified negative resists based on acid-catalyzed pinacol rearrangement 234
6.3.5.2 Chemically amplified negative resists based on acid-catalyzed intramolecular dehydration 236
6.3.5.3 Chemically amplified condensation/intermolecular dehydration negative resists based on acid-catalyzed cross-linking with acid-sensitive electrophile (cross-linking agent) 238
6.3.5.4 Chemically amplified methacrylate negative resists based on acid-catalyzed esterification 246
6.3.5.5 Chemically amplified methacrylate negative resists based on acid-catalyzed deprotection and development in supercritical CO$_2$ 247
6.4 General Considerations on the Chemistry of Cross-Linking 252
6.5 Negative Resists Arising from Polymerization of Monomers in the Presence of Polyfunctional Components 256
6.6 General Considerations on the Chemistry of Photoinitiated Radical Polymerization Employed in Negative Resist Systems 257
6.6.1 Photogeneration of radicals 258
6.6.1.1 Initiators based on photofragmentation 258
6.6.2 Radicals generated by hydrogen abstraction 262
6.6.2.1 Other practical initiator systems based on hydrogen abstraction 263
6.6.3 Dye-sensitized initiation 266
6.6.4 The initiation step 269
6.6.5 Propagation versus termination and the kinetic chain length 270
6.6.5.1 The steady state approximation 270
6.7 General Considerations on Photoinitiated Condensation Polymerization 272
6.7.1 The thiol-ene system 272
6.8 General Considerations on the Photoinitiated Cationic Polymerization Employed in Negative Resist Systems 273
6.8.1 Initiation by onium salts 273
6.8.1.1 Initiation 273
6.8.1.2 Propagation 274
6.9 Practical Negative Resist Compositions Arising from Photopolymerization of Monomers in the Presence of Polyfunctional Components 280
6.9.1 Negative resist composition 280
6.9.2 Binders 280
6.10 Lithographic Applications of Photopolymerization Negative Resists
6.10.1 Lithographic offset plates
6.10.2 Dry resists
6.10.3 Printed circuit boards
6.10.4 Solder mask
6.10.5 IC device fabrication

7 Positive Resists
7.1 Introduction
7.2 Types of Positive Resists
7.2.1 Non-chemically amplified positive resists
7.2.2 Chemical amplification positive resists: the chemical amplification concept
7.2.3 Chemical amplification positive resists based on acid catalysis
7.2.4 Chemical amplification positive resists based on free radical initiation
7.2.5 Chemical amplification positive resists based on metal catalysis
7.3 Resist Materials for Multilayer Resist Systems

8 General Considerations on the Radiation and Photochemistry of Resists
8.1 Interaction of Radiation with Resists
8.2 Excited State Complexes
8.3 Energy Transfer
8.4 Energy Migration in Resist Polymers
8.5 Spectral Sensitization
8.6 Sensitization by Energy Transfer
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6.1</td>
<td>Triplet sensitization</td>
<td>407</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Sensitization by electron transfer</td>
<td>408</td>
</tr>
<tr>
<td>8.7</td>
<td>Radiation Chemistry Versus Photochemistry of Resists</td>
<td>409</td>
</tr>
<tr>
<td>8.8</td>
<td>Radiation Chemical Yield and Dosimetry</td>
<td>411</td>
</tr>
<tr>
<td>8.9</td>
<td>Radiation Chemistry of Polymers</td>
<td>411</td>
</tr>
<tr>
<td>8.9.1</td>
<td>Backbone scission and cross-linking</td>
<td>411</td>
</tr>
<tr>
<td>8.9.2</td>
<td>Determination of the scission yield</td>
<td>412</td>
</tr>
<tr>
<td>8.9.3</td>
<td>Determination of the cross-linking yield G_x</td>
<td>413</td>
</tr>
<tr>
<td>8.10</td>
<td>Sensitivity and Exposure Radiation</td>
<td>414</td>
</tr>
<tr>
<td>8.11</td>
<td>Exposure Mechanisms of Resists and Exposure Radiation</td>
<td>415</td>
</tr>
<tr>
<td>9</td>
<td>Antireflection Coatings and Reflectivity Control</td>
<td>419</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>419</td>
</tr>
<tr>
<td>9.2</td>
<td>Antireflection Coating Strategies</td>
<td>421</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Top antireflection coatings</td>
<td>421</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Theory of top antireflection coatings</td>
<td>424</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Reflection and transmission amplitudes</td>
<td>424</td>
</tr>
<tr>
<td>9.3</td>
<td>Bottom Antireflection Coatings</td>
<td>428</td>
</tr>
<tr>
<td>9.3.1.1</td>
<td>Organic bottom antireflection coatings</td>
<td>428</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Inorganic bottom antireflection coatings</td>
<td>431</td>
</tr>
<tr>
<td>9.4</td>
<td>Applications of Bottom Antireflection Coatings</td>
<td>432</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Suppression of standing waves and reflectivity effects</td>
<td>432</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Feature CD trimming</td>
<td>435</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Damascene applications involving silicon-containing resists and silicon-containing hard mask materials with antireflection properties</td>
<td>437</td>
</tr>
<tr>
<td>9.5</td>
<td>Organic versus Inorganic Bottom Antireflection Coating and Rework/Stripping Issues</td>
<td>438</td>
</tr>
<tr>
<td>9.6</td>
<td>Bottom Antireflection Coating–Resist Interactions</td>
<td>438</td>
</tr>
<tr>
<td>9.7</td>
<td>Theory of Bottom Antireflection Coatings</td>
<td>440</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Reflectivity of absorbing layers</td>
<td>440</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Electric field in photoresist films</td>
<td>441</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Bulk standing wave intensity</td>
<td>444</td>
</tr>
<tr>
<td>9.7.4</td>
<td>Substrate reflectivity and photoresist absorbance</td>
<td>445</td>
</tr>
<tr>
<td>9.7.5</td>
<td>Relative swing amplitude</td>
<td>446</td>
</tr>
<tr>
<td>9.8</td>
<td>Bottom Antireflection Coatings for High-NA Imaging</td>
<td>448</td>
</tr>
</tbody>
</table>

Part III: The Practice of Lithography

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Stone, Plate, and Offset Lithography</td>
<td>451</td>
</tr>
<tr>
<td>10.1</td>
<td>Stone and Plate Lithography</td>
<td>451</td>
</tr>
<tr>
<td>10.2</td>
<td>Offset Lithography</td>
<td>455</td>
</tr>
</tbody>
</table>
10.3 The Offset Lithographic Press 456
10.4 Components of an Offset Lithographic Press 457
10.4.1 Paper-feeding system 457
10.4.2 Damping system 457
10.4.3 Inking system 457
10.5 Types of Offset Lithographic Inks 458
10.6 Fabrication of Lithographic Offset Plates 458
10.7 The Offset Lithographic Process 459
10.8 Waterless Offset Lithography 460

11 The Semiconductor Lithographic Process 463
11.1 Introduction 463
11.2 Adhesion Promotion 464
11.2.1 Priming of silicon dioxide surface with HMDS 466
11.3 Resist Coating 468
11.3.1 The resist spin-coating process 468
11.4 Characterizing Ultrathin Resist Processes 472
11.4.1 Instabilities in ultrathin resist films 473
11.4.2 Spin coating and instabilities in ultrathin resist films 473
11.4.3 Hydrodynamics of ultrathin resist films 474
11.4.4 Instabilities and thermophysical properties of ultrathin resist films 476
11.4.5 Ultrathin films and defectivity 482
11.5 Soft Bake/Prebake 485
11.6 Alignment 488
11.7 Exposure 489
11.8 Postexposure Bake 491
11.8.1 Deprotection kinetics of representative resist polymer systems 493
11.9 Monitoring Photoacid Generation in Thin Photoresist Films by Means of Fluorescence Spectroscopy 498
11.10 Postexposure Bake Sensitivity 501
11.11 Consequences of Acid Diffusion 502
11.12 Development 504
11.12.1 Resist development methods 505
11.12.2 Types of development processes 506
11.12.2.1 Chemical development 506
11.12.2.2 Physical development 507
11.12.3 Development rate characterization 507
11.12.3.1 Laser interferometry 507
11.12.3.2 Quartz crystal microbalance 509
11.13 Dissolution Mechanism of Resist Polymers 511
11.14 Dissolution Mechanism of Phenolic Resists 513
11.15 Comparison of Dissolution Characteristics of Novolac and Poly(hydroxy styrene)-based Resists 513
11.16 General Facts about the Dissolution Mechanism of DNQ/Novolac Resists

11.16.1 Mechanistic models for DNQ/novolac dissolution

11.16.1.1 The membrane model
11.16.1.2 The secondary structure model
11.16.1.3 The critical deprotonation model
11.16.1.4 The percolation model of resist dissolution
11.16.1.5 The critical ionization model
11.16.1.6 The stone wall model of novolac dissolution
11.16.1.7 Effects of resin and inhibitor structure on dissolution rate

11.17 Resist Development Issues

11.17.1 Pattern collapse

11.18 Postdevelopment Bake and Resist Stabilization Treatments

11.18.1 Postdevelopment bake
11.18.2 UV radiation curing
11.18.3 Electron-beam curing of resists

11.19 Measurement and Inspection

11.20 Etching

11.20.1 Wet etching
11.20.2 Dry etching
11.20.2.1 Plasma etching
11.20.2.2 Reactive-ion etching

11.21 Rework/Stripping

12 Lithographic Modeling

12.1 Introduction
12.2 Historical Background
12.3 Structure of a Lithographic Model

12.3.1 Aerial image
12.3.2 Standing waves
12.3.3 Prebake
12.3.4 Exposure
12.3.5 Postexposure bake
12.3.6 Development

12.4 Basic Imaging Theory
12.5 Accounting for Aberrations
12.6 Aerial Image Formation Models

12.6.1 Scalar models for calculating aerial image intensity

12.6.1.1 Zero-order scalar model
14 X-Ray and Extreme Ultraviolet Lithographies

14.1 Introduction

14.2 Proximity X-Ray Lithography
14.2.1 Synchrotron sources
14.2.2 X-ray masks

14.3 Extreme Ultraviolet Lithography
14.3.1 EUV multilayer mirrors
14.3.2 Fabrication of Mo-Si multilayer mirrors
14.3.3 EUV masks
14.3.4 The EUV exposure system
14.3.5 Sources for EUV lithography
14.3.5.1 Laser-produced plasma sources
14.3.5.2 Discharge-produced plasma sources

14.4 Optics Lifetime

14.5 Contamination Processes
14.5.1 Carbon deposition
14.5.2 Oxidation
14.5.3 Impact of contamination

14.6 Contamination Mitigation Strategies
14.6.1 Exposure chamber environment control
14.6.2 Use of oxidation-resistant capping layers
14.6.3 Thermal processes used in EUV optics contamination mitigation
14.6.4 Nonthermal processes used in EUV optics contamination mitigation
14.6.5 Reactive-ion etching processes for cleaning contaminated optics
14.6.6 Debris-mitigation schemes

14.7 EUV Resists and Imaging Performance

15 Charged Particle Lithography

15.1 Introduction

15.2 Electron-Beam Lithography
15.2.1 Electron scattering
15.2.2 Electron-beam lithography systems
15.2.2.1 Electron sources
15.2.2.2 Electron optical components
15.2.2.3 Exposure stage
15.2.2.4 Computer

15.3 Types of Electron-Beam Lithographies
15.3.1 Electron-beam direct-write lithography
15.3.2 Scanning strategies

15.4 Electron Projection Lithography
15.4.1 Scattering with angular limitation projection electron-beam lithography (SCALPEL)
15.4.1.1 SCALPEL technology challenges
15.4.2 Projection reduction exposure with variable axis immersion lens (PREVAIL) lithography

15.5 Ion-Beam Lithography

15.5.1 Types of ion-beam lithographies

15.5.2 Ion projection lithography

15.5.3 Stochastic blur

16 Lithography in Integrated Circuit Device Fabrication 767

16.1 Introduction 767

16.2 Fabrication of a 90-nm CMOS Microprocessor 773

16.2.1 Twin-well process

16.2.1.1 n-well formation

16.2.1.2 p-well formation

16.2.2 Shallow trench isolation process

16.2.2.1 STI oxide fill

16.2.2.2 STI oxide polish and nitride strip

16.2.3 Polysilicon gate process

16.2.4 Lightly doped drain implant processes

16.2.4.1 n⁻ LDD implant

16.2.4.2 p⁻ LDD implant

16.2.5 Sidewall spacer formation

16.2.6 Source/drain implant process

16.2.6.1 n⁺ S/D implant

16.2.6.2 p⁺ S/D implant

16.2.7 Contact formation

16.2.8 Via-1 and tungsten plug formation

16.2.8.1 Via-1 formation

16.2.8.2 Tungsten plug formation

16.2.9 Copper interconnect wiring formation by means of the dual damascene technique

16.2.10 Bond pad metal formation and packaging

16.2.11 Wafer testing and sorting

17 Advanced Resist Processing and Resist Resolution Limit Issues 791

17.1 Introduction 791

17.2 Resist Systems

17.2.1 Single-layer resist systems

17.2.2 Multilayer resist systems

17.2.2.1 Hard mask resist system

17.2.2.2 Top surface imaging resist system

17.2.2.3 Bilayer resist system

17.3 Advanced Resist Processing Techniques

17.3.1 Single-exposure techniques

17.3.1.1 Hyper-NA imaging resist processing techniques
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.1.2 EUV lithography resist processing technique</td>
<td>799</td>
</tr>
<tr>
<td>17.3.1.3 Postexposure-based CD shrink techniques</td>
<td>799</td>
</tr>
<tr>
<td>17.3.2 Reflow CD shrink techniques</td>
<td>800</td>
</tr>
<tr>
<td>17.3.2.1 Thermal reflow shrink technique</td>
<td>800</td>
</tr>
<tr>
<td>17.3.2.2 Electron-beam-induced CD shrink techniques</td>
<td>801</td>
</tr>
<tr>
<td>17.3.3 Chemically induced CD shrink techniques</td>
<td>803</td>
</tr>
<tr>
<td>17.3.3.1 Chemically induced CD shrink techniques based on sidewall formation</td>
<td>803</td>
</tr>
<tr>
<td>17.3.3.2 Chemically induced CD shrink techniques based on sidewall erosion</td>
<td>806</td>
</tr>
<tr>
<td>17.3.3.3 Plasma-assisted CD shrink technique</td>
<td>808</td>
</tr>
<tr>
<td>17.3.4 Double-exposure techniques</td>
<td>809</td>
</tr>
<tr>
<td>17.3.5 Double-patterning techniques</td>
<td>811</td>
</tr>
<tr>
<td>17.3.5.1 Lithography-etch-lithography-etch patterning scheme</td>
<td>813</td>
</tr>
<tr>
<td>17.3.5.2 Lithography-freeze-lithography-etch patterning scheme</td>
<td>813</td>
</tr>
<tr>
<td>17.3.5.3 Self-aligned double-patterning (SADP) scheme</td>
<td>815</td>
</tr>
<tr>
<td>17.4 Resolution Limit Issues of Resists</td>
<td>818</td>
</tr>
<tr>
<td>17.4.1 Resolution limits due to chemical amplification in resists</td>
<td>819</td>
</tr>
<tr>
<td>17.4.1.1 Elucidating how photoacid diffusion leads to resist contrast and resolution loss</td>
<td>823</td>
</tr>
<tr>
<td>17.4.2 Resolution limits due to line edge roughness</td>
<td>825</td>
</tr>
<tr>
<td>17.4.2.1 Base quenchers</td>
<td>826</td>
</tr>
<tr>
<td>17.4.2.2 Polymer size</td>
<td>827</td>
</tr>
<tr>
<td>17.4.2.3 Shot noise</td>
<td>828</td>
</tr>
<tr>
<td>17.4.3 Resolution limits due to confinement effects in resists</td>
<td>829</td>
</tr>
<tr>
<td>17.4.4 Resolution limits due to resist polymer molecular properties</td>
<td>830</td>
</tr>
<tr>
<td>17.4.5 Resolution–line edge roughness–sensitivity trade-off</td>
<td>831</td>
</tr>
<tr>
<td>17.5 Resist Materials Outlook for the 22-nm and Smaller Technology Nodes</td>
<td></td>
</tr>
<tr>
<td>17.6 Resist Processing Outlook for the 22-nm and Smaller Technology Nodes</td>
<td></td>
</tr>
<tr>
<td>Afterword</td>
<td>835</td>
</tr>
<tr>
<td>Index</td>
<td>837</td>
</tr>
</tbody>
</table>
Preface

It is my intention to provide in this book a concise treatment of chemical phenomena in lithography in a manner that is accessible to a wide readership. While the emphasis is placed on how lithography is mediated through chemical phenomena, topics in optical and charged particle physics as they are practiced in lithography are also presented, with a broader view to illustrate how the marriage between chemistry and optics has made possible the print and electronic revolutions on which our digital age depends.

The link between chemistry and lithography is essentially fourfold. First, several important chemical and physical principles were involved in the invention of lithography and photolithography. This theme is explored in Part I, covering Chapters 1–4. Chapter 1 introduces the role of lithography in print and electronic revolutions. Chapter 2 deals with the invention of lithography and photolithography. Chapter 3 provides the background surrounding the discovery of the chemical and optical principles that made possible the invention of lithography and photolithography. Chapter 4 traces the evolution of lithography from its invention to the various forms in which it is practiced today.

Second, the processes for the synthesis, manufacture, usage, and handling of lithographic chemicals and materials are all chemical transformations, involving distinct chemical reactions that follow well-established chemical principles. This theme is explored in Part II, covering Chapters 5–9. Chapter 5 deals with synthesis and formulation of the chemicals used in lithography such as inks, fountain solutions, resists, antireflection coatings, solvents, developers, resist strippers and removers, etc. Chapters 6 and 7 explore the chemistry of negative and positive resist materials, respectively, in terms of their synthesis, physical characterization, radiation chemistry, imaging mechanism, and lithographic applications. Chapter 8 explores in a general manner the radiation and photochemistry of resist materials. Chapter 9 deals with the theory and application of antireflection coatings in reflectivity control.

Third, several important chemical and physical principles are involved in the various modules that constitute lithography, covering preparation of the lithographic substrates (be they lithographic plates or silicon wafers), coating and deposition of resist solutions on appropriate substrates affording thin dry films, exposure of the dry films to actinic radiation, thermal processing of the exposed films, development of the exposed and baked films to afford the
lithographic relief images, and postdevelopment processes designed to stabilize the relief images against subsequent processes. These themes are explored in detail in Part III, dealing with the practice of lithography as exemplified in stone plate and offset lithography on one hand, and semiconductor lithography on the other. These topics are covered in Chapters 10–17.

Chapter 10 deals with stone and offset lithographic processing that is employed in the printing of fine art images, newspapers, textbooks, advertisements, etc. By far, the most advanced form of lithography practiced today is semiconductor lithography, used in the fabrication of logic and memory integrated circuit (IC) devices that power computers, cell phones, telecommunications systems, and a host array of other devices. For this reason, Chapter 11 is entirely dedicated to a discussion on the overview of the semiconductor lithographic process, covering all of the chemical and physical phenomena involved in all of the related unit operations. In particular, the physical characterization of these processes as well as the photochemistry and photophysics involved in the exposure processes are highlighted. Chapter 12 deals with lithographic modeling. Chapter 13 in turn deals with optical lithography, which by far is the most dominant of all of the semiconductor lithographic techniques. Covering g-line, i-line, KrF, ArF, and F₂ lithographies, the discussion here focuses on the physics and chemistry of the exposure sources, the construction of the exposure tool, mask making, and application of these lithographies in device manufacture. Chapter 14 deals with x-ray and EUV lithographies. Chapter 15 presents charged particle lithographies based on electron beams and ion beams.

Chapter 17 explores the chemistry underlying advanced resist processing techniques, including resist-based resolution enhancement techniques (such as double patterning, chemical amplification of resist line or the CARL process, hydrophilic overlayer or the HOL process, reflow techniques, etc.) and stabilization techniques (such as UV, e-beam curing, and ion implantation) used to improve the quality of semiconductor lithographic patterning. In such techniques, the chemistry is often quite different from that used in conventional resist processing. This is one of the most active areas of current research, and one in which it appears likely that employing postexposure resist chemical modifications might prove successful in overcoming resolution limits imposed by the constraints of the geometric optics of the exposure tool.

Chapter 17 also discusses the chemical and physical basis of emerging patterning challenges confronting lithography as the industry transitions to lithographic nodes where the physical properties of the resist become extremely sensitive to the substrate and interfacial and confinement effects. These effects begin to manifest as the thickness of the resist film approaches a few multiples of the radius of gyration of the polymers from which they are constituted. Such challenges include resolution loss due to uncontrolled diffusion, thin-film instabilities and confinement effects, line edge roughness, etc. Other equally important challenges, but not altogether related to resist film thickness, include the impact of oxygen on lithographic patterning, contamination (airborne, water, resist outgas, particle, inorganic salts, etc.), pattern collapse, line width slimming, etc. These are covered in Chapter 13.
The fourth link between chemistry and lithography concerns the principles governing the chemical transformations utilized in process-integration schemes that are part of the implementation of lithography in IC device fabrication. This theme, discussed in Chapter 16, explores how lithography is used to define and pattern the various front end of lithography (FEOL) and back end of lithography (BEOL) layers of a state-of-the-art Advanced Micro Devices (AMD) microprocessor based on a complementary metal-oxide semiconductor (CMOS) device.

An attempt has been made throughout the book to provide examples illustrating the diversity of chemical phenomena in lithography across the breadth of the scientific spectrum, from fundamental research to technological applications. The format of this book is not necessarily chronological, but is such that related aspects of lithography are thematically organized and presented with a view to conveying a unified view of the developments in the field over time, spanning many centuries, from the very first recorded reflections on the nature of matter to the latest developments at the frontiers of lithography science and technology. Nonetheless, the emphasis is predominantly placed on applications that have relevance in the semiconductor industry. The enormous wealth of materials from which these illustrations and examples have been drawn means that this author’s choice is inherently peculiar, although each example is intended to provide deeper insight into the underlying principles involved.

A great many of the pioneers of chemistry and lithography are not represented herein at all. I can only record my immense debt to them and all who have contributed to the development of the two fields to the state in which I have reported it.

I am indebted to a number of people who in one way or another made this book possible. My academic mentor, the late Professor William C. Gardiner, Jr. of The University of Texas at Austin, distinguished teacher and physical chemist, himself the author of numerous books, introduced me to physical chemistry and guided my academic development in the field.

Professor C. Grant Willson of The University of Texas at Austin introduced me to lithography and supervised my doctoral thesis. I learned the intricacies of resist processing under the tutelage of the late Dr. Jeffrey Byers of SEMATECH.

A number of colleagues and associates proofread the entire manuscript or some chapters of the book, and provided valuable suggestions and corrections. These include Dr. Harry J. Levinson, my manager at AMD and also at GlobalFoundries, and Dr. Chris Mack, developer of PROLITH and founder of the FINLE Corporation, both of whom read the entire manuscript. Dr. Jim Thackeray of Rohm and Haas Electronic Materials read Chapters 5–8; these are the chapters dealing with lithographic chemicals. Dr. Witek Maszara of GlobalFoundries read Chapter 16, which deals with the application of lithography in IC device fabrication. These reviewers should not be blamed for any errors that may remain, which are strictly my responsibility.

In a less direct way, I have benefited throughout my professional career from scientific and technical discussions in the area of advanced lithography with colleagues at the strategic lithography technology departments of both AMD and GlobalFoundries, as well as at the lithography department of
IMEC (Inter-University Microelectronics Center). I have also benefited from scientific discussions in the area of polymers and photochemistry with Professor Katharina Al-Shamery of Univeristät Oldenburg in Germany, and in the area of physical methods of polymer characterization with Professors Jim Watkins and Todd Emrick of the University of Massachusetts at Amherst.

I also want to express my sincere thanks to the editorial staff of SPIE, and especially to Dara Burrows and Tim Lamkins, who have been most sympathetic and helpful at all times during the course of writing this book. They remained undismayed by the long delays as the length of the book expanded far beyond what we originally agreed to. The book is a much better book because of their editorial assistance.

Portions of this book were written in libraries and museums in a number of locations within the United States and Germany. I am particularly grateful to the staff of the archives of the Deutsches Museum in Munich, especially to Dr. Eva Mayring, Margrit Prussat, and Wolfgang Schinhan, for the assistance they rendered to me during my research at their facility in locating archival materials on and by some of the seminal individuals whose research in decades and centuries gone by greatly contributed to the invention and development of lithography.

The permission granted to me by AMD and extended by GlobalFoundries, the two companies for which I work, made it possible for me to write this book. I am indebted to Michela Jacob, the librarian in the AMD Fab30 facility and GlobalFoundries Fab1 in Dresden, Germany, for the numerous books and articles she was able to procure for me, sometimes from libraries far-flung from Dresden. I am also indebted to the individuals and publishers who granted me the permission to reproduce in this book some of their copyrighted figures and tables.

Finally, I must acknowledge the assistance I have received from my family members. Writing a book of this size takes undue toll on everyone directly or indirectly involved with it, particularly family members who have had to endure all kinds of inconveniences too numerous to mention. I wish therefore to acknowledge their helpful support. For these and other blessings, I am truly grateful.

Uzodinma Okoroanyanwu
Florence Village, Northampton, Massachusetts
November 2010
Acronyms and Abbreviations

AEE aminoethoxy ethanol
AFM atomic force microscope
AIBN azobis(isobutyronitrile)
AMC airborne molecular contaminant
APM atomic processing microscope
AR antireflection
ARC antireflection coating
att-PSM attenuated phase-shifting mask
BARC bottom antireflection coating
BEOL back end of line
BIM binary intensity masks
BJT bipolar junction transistor
BLR bilayer resist
BOCST butoxycarbonyloxystyrene
BOP benzyl-protected poly(p-hydroxystyrene)
BPO benzoyl peroxide
CaF$_2$ calcium fluoride
CAD computer-aided design
CAR chemically amplified resist
CARL chemical amplification of resist lines
CBN carbomethoxy norbornene
CD critical dimension
CFC chlorofluorocarbon
CH cyclohexanone
CMN carbomethoxy norbornene
CMOS complimentary metal-oxide semiconductor
CMP chemical mechanical polishing
CMTF critical modulation transfer function
CO cycloolefin
COG chromium-on-glass
COMA cycloolefin-maleic anhydride
COP crystal-originated pit
CPU central processing unit
CVD chemical vapor deposition
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>DEA</td>
<td>dissociative electron attachment</td>
</tr>
<tr>
<td>DEAP</td>
<td>diethoxyacetophenone</td>
</tr>
<tr>
<td>DMAc</td>
<td>dimethylacetamide</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DMI</td>
<td>dimethyl-2-imidazolidinone</td>
</tr>
<tr>
<td>DMPA</td>
<td>dimethoxy phenylacetophenone</td>
</tr>
<tr>
<td>DMSDMA</td>
<td>dimethylsilyldimethylamine</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DNQ</td>
<td>diazonaphthoquinone</td>
</tr>
<tr>
<td>DOF</td>
<td>depth of focus</td>
</tr>
<tr>
<td>DP</td>
<td>degree of polymerization</td>
</tr>
<tr>
<td>DPD</td>
<td>diazopyrazolidine dione</td>
</tr>
<tr>
<td>DPP</td>
<td>discharge-produced plasma</td>
</tr>
<tr>
<td>DPPH</td>
<td>diphenyl picrylhydrazyl</td>
</tr>
<tr>
<td>DRAM</td>
<td>dynamic random access memory</td>
</tr>
<tr>
<td>DRLS</td>
<td>development rate log slope</td>
</tr>
<tr>
<td>DRM</td>
<td>development rate monitor</td>
</tr>
<tr>
<td>DTBP</td>
<td>di-tert-butyl peroxide</td>
</tr>
<tr>
<td>DTBPIONf</td>
<td>di(tert-butyphlenyl) iodonium perfluorobutanesulfonate (nonaflate)</td>
</tr>
<tr>
<td>DUV</td>
<td>deep ultraviolet</td>
</tr>
<tr>
<td>EBES</td>
<td>electron-beam exposure system</td>
</tr>
<tr>
<td>EBL</td>
<td>electron-beam lithography</td>
</tr>
<tr>
<td>ECR</td>
<td>electron cyclotron resonance</td>
</tr>
<tr>
<td>EFM</td>
<td>electric-field-induced migration</td>
</tr>
<tr>
<td>EL</td>
<td>ethyl lactate</td>
</tr>
<tr>
<td>EOC</td>
<td>etalon output coupler</td>
</tr>
<tr>
<td>EOL</td>
<td>end of line</td>
</tr>
<tr>
<td>EPR</td>
<td>electron projection lithography</td>
</tr>
<tr>
<td>ESCAP</td>
<td>environmentally stable chemically amplified photoresist</td>
</tr>
<tr>
<td>ESD</td>
<td>electrostatic discharge</td>
</tr>
<tr>
<td>EUV</td>
<td>extreme ultraviolet</td>
</tr>
<tr>
<td>FEOL</td>
<td>front end of line</td>
</tr>
<tr>
<td>FET</td>
<td>field-effect transistor</td>
</tr>
<tr>
<td>FIB</td>
<td>focused ion beam</td>
</tr>
<tr>
<td>FRP</td>
<td>free radical polymerization</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>FWHM</td>
<td>full width half maximum</td>
</tr>
<tr>
<td>HDPCVD</td>
<td>high-density chemical vapor deposition</td>
</tr>
<tr>
<td>HEPA</td>
<td>high-efficiency particulate air</td>
</tr>
<tr>
<td>HF</td>
<td>hydrofluoric acid</td>
</tr>
<tr>
<td>HMDS</td>
<td>hexamethyldisilazane</td>
</tr>
<tr>
<td>HOL</td>
<td>hydrophilic overlayer</td>
</tr>
<tr>
<td>HSQ</td>
<td>hydrogen silesquioxanes</td>
</tr>
</tbody>
</table>
HVM | high-volume manufacturing
IC | integrated circuit
IGFET | insulated gate field-effect transistor
ILD | interlayer dielectric
IMS | ion microfabrication system
IPL | ion projection lithography
ITRS | International Roadmap for Semiconductors
JFET | junction field-effect transistor
KRS | ketal resist system
KTFR | Kodak Thin Film™ resist
LBNL | Lawrence Berkeley National Laboratories
LEE | low-energy electron
LEEPL | low-energy electron projection lithography
LELE | lithography-etch-lithography-etch
LER | line edge roughness
LFLE | lithography-freeze-lithography-etch
LLD | lightly doped drain
LPCVD | low-pressure chemical vapor deposition
LPP | laser-produced plasma
L/S | line/space
LWR | line width roughness
Mac | methylacetamide
MEA | monoethanolamine
MEBES | multiple electron-beam exposure system
MEEF | mask error enhancement factor
MEMS | microelectromechanical system
MET | microexposure tool
MIBK | methylisobutyl ketone
MIF | metal-ion-free
ML | multilayer
MMA | methyl methacrylate
MOCVD | metal-organic chemical vapor deposition
MOP | methoxypropyl-protected poly(p-hydroxy styrene)
MOS | metal-oxide semiconductor
MOSFET | metal-oxide semiconductor field-effect transistor
MTF | modulation transfer function
MW | molecular weight
NA | numerical aperture
NBHFA | norbornene hexafluoroisopropanol
NHA | numerical half-aperture
NH₄HF | ammonium fluoride
NILS | normalized image log-slope
nMOS | n-channel metal-oxide semiconductor
NMP | N-methylpyrrolidone
NVSM | nonvolatile semiconductor memory
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>optical proximity correction</td>
</tr>
<tr>
<td>OPD</td>
<td>optical path difference</td>
</tr>
<tr>
<td>OPE</td>
<td>optical proximity effect</td>
</tr>
<tr>
<td>PAC</td>
<td>photoactive compound</td>
</tr>
<tr>
<td>PAG</td>
<td>photoacid generator</td>
</tr>
<tr>
<td>PBOCST</td>
<td>poly(tert-butoxycarbonyl oxy styrene)</td>
</tr>
<tr>
<td>PBS</td>
<td>poly(butene sulfone)</td>
</tr>
<tr>
<td>PCB</td>
<td>printed circuit board</td>
</tr>
<tr>
<td>PCM</td>
<td>portable conformable mask</td>
</tr>
<tr>
<td>PDMS</td>
<td>polydimethylsiloxane</td>
</tr>
<tr>
<td>PE</td>
<td>photoelectron</td>
</tr>
<tr>
<td>PEB</td>
<td>postexposure bake</td>
</tr>
<tr>
<td>PECVD</td>
<td>plasma-enhanced chemical vapor deposition</td>
</tr>
<tr>
<td>PFOS</td>
<td>perfluorooctane sulfonic acid</td>
</tr>
<tr>
<td>PGMA</td>
<td>poly(glycidyl methacrylate)</td>
</tr>
<tr>
<td>PGME</td>
<td>propylene glycol monomethylether</td>
</tr>
<tr>
<td>PGMEA</td>
<td>propyleneglycol monomethyl ether acetate</td>
</tr>
<tr>
<td>PHOST</td>
<td>polyhydroxystyrene</td>
</tr>
<tr>
<td>PMIPK</td>
<td>poly(methyl isopropenyl ketone)</td>
</tr>
<tr>
<td>PMMA</td>
<td>poly(methyl methacrylate)</td>
</tr>
<tr>
<td>pMOS</td>
<td>p-channel metal-oxide semiconductor (field-effect transistor)</td>
</tr>
<tr>
<td>PMPS</td>
<td>poly(methylpentene sulfone)</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>PPDA</td>
<td>p-phenylenediacylic acid</td>
</tr>
<tr>
<td>PREVAIL</td>
<td>projection reduction exposure with variable axis immersion lens</td>
</tr>
<tr>
<td>PROLITH</td>
<td>positive resist optical lithography</td>
</tr>
<tr>
<td>PSM</td>
<td>phase-shifting mask</td>
</tr>
<tr>
<td>PVD</td>
<td>physical vapor deposition</td>
</tr>
<tr>
<td>PVP</td>
<td>poly(vinyl pyridine)</td>
</tr>
<tr>
<td>PWB</td>
<td>printed wiring board</td>
</tr>
<tr>
<td>RB</td>
<td>rose bengal</td>
</tr>
<tr>
<td>RC</td>
<td>resistance capacitance</td>
</tr>
<tr>
<td>RELACS</td>
<td>resolution enhancement of lithography assisted by chemical shrink</td>
</tr>
<tr>
<td>RIE</td>
<td>reactive-ion etching</td>
</tr>
<tr>
<td>ROMP</td>
<td>ring-opening metathesis polymerization</td>
</tr>
<tr>
<td>SADP</td>
<td>self-aligned double patterning</td>
</tr>
<tr>
<td>SAM</td>
<td>self-assembled monolayer</td>
</tr>
<tr>
<td>SCALPEL</td>
<td>scattering with angular limitation projection electron-beam lithography</td>
</tr>
<tr>
<td>S/D</td>
<td>source/drain</td>
</tr>
<tr>
<td>SEMC</td>
<td>single-electron memory cell</td>
</tr>
<tr>
<td>SLM</td>
<td>spatial light modulator</td>
</tr>
<tr>
<td>SLR</td>
<td>single-layer resist</td>
</tr>
<tr>
<td>SNS</td>
<td>sulfone/novolak system</td>
</tr>
</tbody>
</table>
SPM sulfuric acid and hydrogen peroxide mixture
STI shallow trench isolation
STM scanning tunneling microscope
TBEST tert-butyl ester-protected 4-hydroxystyrene
TBMA tert-butyl methacrylate
TBTTFMA tert-butyl-2-trifluoromethylacrylate
TCAD technology computer-aided design
TE transverse electric
TEM transmission electron microscopy
TFE tetrafluoroethylene
THF tetrahydrofuran
THP tetrapyrnal
TM transverse magnetic
TMAH tetramethylammonium hydroxide
TMS trimethylsilyl
TMSDEA trimethylsilyldiethylamine
TMSDMA trimethylsilyldimethylamine
TPSHFA triphenylsulfonium hexafluoroantimonate
TSI top surface imaging
ULPA ultralow-penetration air
UTR ultrathin resist
UV ultraviolet
VAP vinyl addition polymerization
VEMA poly(vinyl ether-alt-maleic anhydride)
VUV vacuum ultraviolet
WET wafer electrical test
XRR x-ray reflectivity