## Index

absorptance, 5  
absorption, 4  
achromatism, 21, 29  
Advanced Technology Solar Telescope, 87  
afocal, 19, 70, 84  
attachment, 57, 65  
system, 58  
Agency for Defence Development, 104  
air lenses, 85  
Airy disk, 11  
alignment, 45  
Altman, Richard M., 129  
Angenieux, 84  
antireflection coatings, 7  
aperture stop, 13, 14, 41, 51, 59, 98  
aplanatic condition, 20, 38, 111  
aspherics, 40, 80, 102  
astigmatism, 19, 111, 120  
astronomical telescope, 17  
athermalization, 28, 32, 51, 72, 73, 123  
atmospheric transmission, 3  

Barr & Stroud, 27, 65, 146  
beam expander telescope, 90, 128  
Beijing Institute of Technology, 116  
bending, 23, 38  
blackbody, 1  
boresight, 45, 76  
boundary conditions, 97  

calcium fluoride, 27, 56  
calibration, 2, 119  
cam, 48, 69, 71, 73, 104, 125  
Carl Zeiss, 84, 88  

Cassegrain, 111  
catadioptric, 119  
CCD array, 10, 12  
cell phone, 128  
applications, 88  
Center for Applied Optics, University of Alabama, Huntsville, 112  
centration tolerance, 69  
charge-coupled device (CCD), 10, 87  

chief ray, 14  
chromatic aberration, 21  
CI Systems, 55  
Clark, A. D., 45  
coefficient of expansion, 29  
cold shield, 30  
cold stop, 30, 31  
color correction, 96, 97  
coma, 19  
compactness, 37, 68  
compensator, 66, 89  
computer optimization, 41, 42, 125  
computer programs, 44  
conics, 40  
conic sections, 123  
Contraves Brashear, 117  

depth of focus, 15, 17, 104  
detector array, 11, 12  
dewar assembly, 10  
Dezir, 67  
diamond turning, 93, 123  
diffraction limit, 16  
diffractive  
   optics, 93  
surfaces, 41
dispersion, 26, 94
distortion, 19, 52
dual field of view, 83, 106

effective focal length, 13, 16, 51
Electrooptical Industries, 74
emissivity, 1
entrance pupil, 13, 14, 61
exit pupil, 13, 14, 120
expert system, 42
extender, 52
eyepiece, 18, 66, 101
field
curvature, 19, 20
flattener, 57, 58, 61
lens, 39, 40
field of view, 36, 115
first-order solution, 68
focal plane array, 104, 124
focusing, 66, 73
Ford, E., 81
foreoptics, 61
telephoto, 62
forward-looking infrared (FLIR),
24, 55, 63, 65, 70
Fuji Photo Optical Company, 83
Galilean telescope, 17, 24, 65
germanium, 8, 21, 26, 102
glass substitution, 31
global search, 42
Hughes Aircraft Company, 56, 113,
138
hybrid, 95
index of refraction, 6, 25, 27
Industrial Research, Ltd., 119
Industrial Technology Research
Institute, 88
infrared, 3, 14, 25, 35, 94, 123
Jamieson, T. H., 60
Johnson, R. B., 112, 115
Joule-Thomson, 9
Kebo, R., 113
Korea Advanced Institute of Science
and Technology, 111
Lagrange invariant, 36
laser beam expanders, 88
lateral color, 83, 108
law enforcement, 99
lead zirconium titanate (PZT), 106
lens
equation, 13
transmission, 5
Lockheed Martin, 60, 119
LOWTRAN, 4
magnification, 51, 58, 71, 74
Mangin mirror, 119
Mann, A. 31, 34, 95, 113
materials, 25, 37
mechanically compensated zoom
lens, 48, 125
microscanning, 106
Mie scattering, 3
mobile phone zoom lens, 87
modulation transfer function, 16, 51,
62, 72, 99, 115
multilayer coatings, 8
narcissus, 30, 31, 52, 68, 72
National First University of Science
and Technology, 87
Navitar, Inc, 52
Neil, I. A., 76, 81, 146
Newton’s equation, 46
nodal planes, 23
Noyes, Gary R., 138

objective, 18, 101
obscured systems, 111
Optical E.T.C., 95, 113
Optical Research Associates, 120
optically compensated zoom lens, 45, 81
Optics 1, 63, 70, 94
optimization, 32, 60, 61, 87, 97, 115
Optimum Optical Systems, 81

Petzval, 39
photon detector, 9
Pilkington P.E., 67
pixels, 10, 12
Planck, 1
plastic, 88, 124
Precision-Optical Engineering, 71
primary aberrations, 18
principal planes, 22, 23
projection, 56

Rayleigh
limit, 15, 16, 24
scattering, 3
Raytheon, 102, 104
Reardon, P., 97
reflectance, 5
reflection, 6
remotely piloted vehicles, 68
resolution, 11
resonance damping, 85
Rosenblatt, Jerome J., 129
Royal Institute of Technology, 83, 106

scaling, 35
scanning system, 65, 84, 88
scattering, 93
scene projection, 127
Scotoptix, 76
search and rescue, 128
secondary spectrum, 22
seekers, 95
Seidel aberrations, 16, 19, 89, 91
Sellmeier equation, 28
signal-to-noise ratio, 9
silicon, 21, 26
simulation, 127
simulators, 55
Snell’s law, 7
special systems, 117
specifications, 50
spectral region, 51
spherical aberration, 19, 25, 38, 59, 76
staring arrays, 11, 124
starting point, 35, 87, 96
Stefan-Boltzmann, 2
stepper motors, 81, 125
stop shift equations, 20
Strehl ratio, 15, 87
symmetry principle, 37, 57, 58

target
search and recognition, 127
simulator, 55, 57
Teledyne Brown, 95
telephoto foreoptics, 62
telescopes, 17
Texas Instruments, 101
thermal
compensation, 28, 63
detectors, 9
thin lens, 22, 35, 39, 59
tolerances, 44, 66, 69, 71
transmission, 6, 52
transmittance, 5, 98
uncooled linear array detectors, 116
University of Alabama, Huntsville, 87
University of Twente, 89
unobscured system, 113

variator, 89
vignetting, 41, 52, 96

wavelength, 4, 36
Wescam, Inc., 99
Wien, 2

Zernike polynomials, 16
Zhejiang University, Department of Optical Engineering, 73
zinc
selenide, 21, 26
sulfide, 8, 26
zoom
collimator, 60, 116, 117
lenses, 45
projector, 63
range, 99
relay, 62
Zulu, 68
About the Author

Allen Mann received his BS in physics at UCLA in 1961. He has 48 years of experience in the design and analysis of a wide variety of optical systems, including visual and infrared zoom lenses. He was first employed as an optical designer at the Infrared Laboratory of Lockheed Aircraft Corporation. His subsequent positions were with Northrop Nortronics, Xeros Electro-Optical Systems, and Ford Aeronutronic. He has written several papers on the subject of infrared zoom lenses and is the editor for the SPIE Milestone volume Selected Papers on Zoom Lenses. He was chairman of SPIE Zoom Lens Conference I and co-chair of Zoom Lens Conference II. Mann retired from Hughes Aircraft Company in 1992 and is now an independent consultant. He teaches the SPIE short course on infrared zoom lenses and is a member of SPIE and the Optical Society of America.