Index

Abbe number, 18
 for the infrared spectra, 115
aberrations, 116
 chromatic, 18
achromats, 39
air-spaced
 doublet, 65
 triplet, 65
Airy disk, 113
AMTIR-1, 58
aspherizing, 23, 52
 a singlet, 26
astigmatism, 19, 104
athermats, 73
ball lens, 89
bending a lens, 11
best shape, 11
 for minimum spherical aberration, 23
Cassegrain
 basic telescope layout, 122
 classic system, 124
 with two spherical mirrors, 123
chromatic aberration, 18
cold stop, 67
coma, 19
curvature, 11
Dall-Kirkham arrangement, 124
detector, 16, 21
Dewar housing, 67
dialyte, 57
diamond-turned hybrid, 50
diffraction limit, 113
diffractive phase profile, 52
f/#, 115
focal plane array, 148
focus shift
 of a diffractive lens, 74
 of a refractive element, 73
frequency
 cut-off, 147
 normalized, 147
 Nyquist, 149
 spatial, 147
Gregorian
 microscope objective, 130
 telescope, 127
G-sums, 15
half field angle, 115
hybrid, 69
 lens, 151
 petzval objective, 67
image height, 115
impact of housing material, 80
limits, 147
 lens
 thick, 34
 thin, 11
LWIR region, 50
manufacturing remarks, 109
materials for the 3–5 µm spectral band (MWIR), 77
materials for the 8–12 µm spectral band (LWIR), 78
microscope objectives, 121
minimum blur, 17
multiple lens arrangement, 23
MWIR region, 48
n, 12
net curvature, 11
Newton, Isaac, 121
nomograms, 55
Nyquist frequency, 149

optical modulation transfer function, 147

parabolic mirror, 107
paraxial focal plane, 21
Pegel diagrams, 95, 98
performance plots, 59
Petzval
curvature, 101
objective, 65
phase
coefficients, 61
equation, 76
pixel sizes, 147, 148
plane-parallel plate, 137
power, 11
prisms, 137

relative aperture, 113
reversed telephoto, 62
Ritchey-Chretien configuration, 125

sapphire, 141

Seidel
diagrams, 95
surface contributions, 96
shift of image, 141
silicon, 141
single optical elements, 113
single-imaging mirror, 101
single-point diamond turning, 108, 109, 128
slow tool servo, 108
Smith’s method, 45
spherical aberration, 16
telephoto, 62
telecope objectives, 121
thermal glass constant, 74
thick lens, 34
thin lens, 11
concept, 33
toroidal mirrors, 104
transverse spherical-aberration
contribution, 12
third-order, 35
tunnel diagrams, 139
two Schwarzchild objectives, 131
two separated components, 57
two-mirror systems, 121
Max J. Riedl was born in Kempten, Germany, where he was educated at the Mathematisch Mechanisches Institut. He also graduated from the Akademie für angewandte Technik in Munich, where he studied precision mechanics and optics. He has worked in the field of mathematical and optical instruments for many years and holds numerous patents for mechanical, optical, and electro-optical devices. He held technical as well as business leadership positions during the 45 years he lived in the United States. He has published and presented many papers on fundamental lens design as well as on replicating optical elements and diamond turning diffractive optical components for applications in the infrared spectrum. He regularly teaches short courses on these subjects. He is the author of the well-received tutorial text *Optical Design Fundamentals for Infrared Systems* (SPIE Press, Vol. TT48), which is now in its second edition. He has also translated that textbook into German. He is a Fellow of SPIE. Presently, he resides in Bavaria, Germany.