Index

A
AAN (see aliasing as noise)
aliasing, 7, 29, 51, 61, 87, 109, 149
aliasing as noise, 161, 177
analog filter, 58
angle space, 62
atmospheric transmission, 218
Auger recombination, 249
average display luminance, 142

B
background-limited D^*, 254
background photon flux, 256
bar targets, 130
bilinear interpolation, 90
blocked aperture MTF, 46
blur, 150
boost, 180

C
calibration constant, 152
camera, 5
cathode ray tube, 213
CCD (see charge-coupled device)
chance, 47
charge-coupled device, 198–199
cold stop, 224
contrast enhancement, 180
contrast threshold function, 139, 277, 279
coordinate systems, 155
cortical filters, 139, 176, 197, 281
CRT (see cathode ray tube)
CTF (see contrast threshold function)
CTF$_{sys}$ (see system contrast threshold function)

dark current, 247
depletion current, 250
detectivity, 252
detectivity model, 152, 172
detector bias point, 246
detector MTF, 40, 48, 226
detector noise, 223, 256
diamond-shaped detector, 41
diffraction MTF, 37, 46
diffusion current, 249
diffusion MTF, 226, 262
direct-injection circuit, 246
display format, 218
display glare (see glare)
display luminance (see average
display luminance and minimum
display luminance)
display MTF, 213
dither, 100
driving function, 10
effective blackbody temperature, 168
electron–hole pairs, 243
electronic stabilization, 55
enclosure flux, 224
equivalent bandwidth, 38
erf (see error function)
error function, 145
exponential MTF, 48
eye model (see observer vision model)
eye tracking, 51
eyeball MTF, 139, 280
F
field replication, 58, 111, 119
field test, 125
fill factor, 253
fixed pattern noise, 246, 257
flux model, 223
forcing function (see driving function)
FPN (see fixed pattern noise)
frame integration, 201, 282
frequency domain filters, 35

G
gain, 134, 198
Gaussian MTF, 48
glare, 142

H
HgCdTe, 259

I
identification task, 116, 118, 120, 123
image reconstruction (see reconstruction)
imager gain (see gain)
InSb, 259
interlace, 100, 200
interpolation, 15, 88, 90
interpolation MTF, 94
isoplanatic patch, 32

L
LCD (see liquid crystal display)
level, 135, 198
linear shift invariant, 31
linearity, 9, 31
line-of-sight jitter, 49
liquid crystal display, 213
LOS jitter (see line-of-sight jitter)
LSI (see linear shift invariant)

M
microscan, 99
minimum display luminance, 142
minimum resolvable temperature, 182, 187
mistake rate, 147
MODTRAN4, 221
modulation, 137
modulation transfer function, 33
motion blur, 57, 111
MRT (see minimum resolvable temperature)
MTF (see modulation transfer function)
multipixel interpolation, 90

N
natural illumination, 194
NEDT (see noise equivalent temperature difference)
neural noise, 139
noise
 normalized, 151
 spatial, 150
 temporal, 152
noise current, 258
noise equivalent, 153
noise equivalent temperature difference, 255

O
observer training (see training)
observer vision model, 139, 277
oculomotor system, 52
one-dimensional analysis, 43
optical transfer function, 33
optics MTF, 208
OTF (see optical transfer function)

P
Φ84, 145
photocurrent, 243, 256
photogenerated electrons, 243
photon model, 154
photovoltaic detector, 241
PID (see probability of identification)
pixel replication, 90
Planck's equation, 171
point spread function, 31
postblur, 3, 7, 66
postsample (see postblur)
preblur, 3, 7, 64
presample (see preblur)
probability of identification, 124, 127, 144
proportionality constant (see calibration constant)
psf (see point spread function)
pyrometer temperature, 170

Q
quantal noise, 139
quantum efficiency η, 252
quantum well infrared photodetectors (QWIPs), 248

R
R_0A, 243
radiative (band-to-band) recombination, 248
range performance, 144, 179, 202
readout integrated circuit (ROIC), 246
real MTF, 42
reconstruction, 5, 12
reflectivity model (see photon model)
replication (see pixel replication)
resolution, 131
response function, 10
responsivity, 252
ROIC (see readout integrated circuit)
ROIC noise, 257

S
S_{imp} (see scene contrast temperature)
sample imager, 3
sample imager response, 61, 68
sample phase, 66
sampling, 156
sampling process, 5, 7, 15
sampling theorem, 24
scene contrast temperature, 136, 176, 181
scene flux, 224
separability, 36, 144
shift invariance, 10, 31
Shockley-Read-Hall recombination, 249
signal, normalized, 151
signal reconstruction, 14
signal spectral density, 133
signature (see target signature)
SIR function (see spurious imager response function)
sky-to-ground ratio, 220
SMAG (see system magnification)
snapshot, 201
spatial cues, 134
spatial domain filters, 35
spurious response (see also aliasing), 61
spurious imager response function, 67, 156
SRH recombination (see Shockley-Read-Hall recombination)
symmetrical shape MTF, 42
system contrast threshold function, 140, 174, 196, 279
system magnification, 57–58

T
target contrast, 122, 133, 193
target identification (see identification task)
target signature, 121
target test set (see test sets)
targeting task performance metric, 133, 144
test sets, 123, 126, 128
thermal imager, 165
thermal signature, 167, 173
TOD (see triangle orientation discrimination)
training, 122
transfer function, 33
triangle orientation discrimination, 184
TTP (see targeting task performance metric) turbulence, 223

V
visibility, 221
visual cortex filters (see cortical filters)

W
white frequency spectrum, 132
Richard H. Vollmerhausen currently consults in the areas of electro-optical systems analysis and modeling. He retired as head of the Model Development Branch at the U.S. Army’s Night Vision Lab (NVL). During his tenure at NVL, the branch developed and validated a target acquisition metric to replace the traditional Johnson criteria. His experience includes project engineer and EO systems analyst for numerous Army weapon systems. His previous work included designing air-to-air missile seekers for the Navy and working as an instrumentation engineer for Douglas Aircraft on the Saturn/Apollo program. Mr. Vollmerhausen is the author of two books on electro-optical systems analysis and has published numerous journal and symposium papers.

Donald A. Reago, Jr. has 24 years experience in electro-optics gained through his work at the Army Night Vision Lab (now NVESD). His background includes development on infrared systems, component development technology, and signal processing/multisensor fusion for automatic target recognition. He currently serves as the Deputy Director for Technology and Countermine at NVESD.

Ronald G. Driggers received a doctorate in electrical engineering from the University of Memphis in 1990. Dr. Driggers has 23 years of electro-optics experience and has worked or consulted for Lockheed Martin (Orlando), SAIC, EOIR Measurements, Amtec Corporation, Joint Precision Strike Demonstration Project Office, Redstone Technical Test Center, and Army Research Laboratory. He was recently appointed to the Senior Executive Service as the Superintendent of the Optical Sciences Division at the Naval Research Laboratory. Previously, he was the Director of the Modeling and Simulation Division at the U.S. Army’s Night Vision and Electronic Sensors Directorate (NVESD). Dr. Driggers is the author of four books on infrared and electro-optics systems and has published over 100 research papers. He was Editor-in-Chief of the Encyclopedia of Optical Engineering (Taylor and Francis). He was selected as the 2002 Army Materiel Command’s Engineer of the Year, the 2001 CERDEC Technical Employee of the Year, and the 2001 NVESD Technical Employee of the Year. He is a U.S. Naval Reserve Officer and was selected as the 2001 Naval Engineering Duty Officer of the Year (William Kastner Award). He is also a Fellow of SPIE, the Optical Society of America, and the Military Sensing Symposium. In January 2010, Dr. Driggers took over duties as Editor-in-Chief of SPIE’s flagship journal, Optical Engineering.