Bibliography

Basics of Fibers

Nonlinear Effects in Fibers

Bibliography (cont.)

Passive Fibers for Data Transmission

[30] Standards of the International Telecommunication Union (ITU), see http://www.itu.int/

Bibliography (cont.)

Photonic Crystal Fibers

Bibliography (cont.)

Large Mode Area Fibers

Bibliography (cont.)

Passive Fiber-Optic Components

Active Fiber Devices

Additional References

- R. Paschotta, Encyclopedia of Laser Physics and Technology, covering many topics of this Field Guide. The online version is freely usable by the public at http://www.rp-photonics.com/encyclopedia.html. The print version is available via Wiley-VCH, Germany.
active fibers, 74
adiabatic soliton compression, 41
air-guiding fibers, 58
amplified spontaneous emission (ASE), 81
amplifiers, 83
angled cleaves, 66
angular mismatch, 64
anomalous dispersion, 27
beam propagation method, 2
bend losses, 23
birefringence, 29
birefringent photonic crystal fibers, 59
Bragg gratings, 70
Brillouin scattering, 48, 32
chalcogenide glasses, 18
chirally coupled core fibers, 61
chirped-pulse amplification (CPA), 95
chromatic dispersion, 24–27
chromatic dispersion of telecom fibers, 51
circulators, 72
cladding, 1
cladding modes, 7, 6
cladding pumping, 78
cleaving of fibers, 66
compensation of dispersion, 52
compensation of pulses, 39
connectors, 68
continuous-wave fiber lasers, 90
core, 1
coreless end caps, 8
couplers, 69
cross-phase modulation (XPM), 43
damage of fibers, 60, 80, 85
decomposition into modes, 5
dichroic fiber couplers, 90
differential gain efficiency, 86
differential group delay (DGD), 54
directional couplers, 69
dispersion, 16, 24, 54
dispersion compensation, 25, 52, 95
dispersion-flattened fibers, 51
dispersion management, 25
dispersion-shifted fibers, 51
dispersion slope, 51
distributed Raman amplifiers, 47
double-clad fibers (DCF), 77–78
effective mode area, 12–13
endlessly single-mode fibers, 56
Index

energy transfers, 75
equivalent index method, 24
erbium-doped fiber amplifiers (EDFA), 83
erbium energy levels, 83
extrinsic losses, 21

Faraday isolators, 72
fiber amplifiers, 83
fiber-based pump couplers, 78, 85
fiber Bragg gratings (FBG), 39, 63–64, 66, 70–72
fiber connectors, 63, 68
fiber core, 1
fiber-coupled Faraday isolators, 72
fiber couplers, 69
fiber damage, 60, 80, 85
fiber ends, preparation of, 66
fiber joints, 64
fiber lasers, 90
fiber modes, 3–4, 6
fiber polarization controllers, 73
fiber splitters, 69
fluoride glasses, 76
four-wave mixing (FWM), 32, 44
frequency doubling, 32
fusion splicing, 63, 67

gain compression, 88
gain efficiency, 86
gain saturation, 88–89
gas-filled hollow fibers,

glass fibers, 17
group velocity, 26
group velocity dispersion (GVD), 26
guided modes, 6

high-power fiber amplifiers, 85
high-power lasers, 91
higher-order dispersion, 26
higher-order soliton compression, 41
higher-order solitons, 38
holey fibers, 55
hollow-core photonic bandgap fibers, 58
host glass, importance of, 74–75
host glasses, common, 76

intermodal dispersion, 16
intrinsic losses, 21
isolators, 72
ITU standards, 53

Kerr effect, 33

large mode area fibers, 60
launching light into single-mode fibers, 65
leakage channel fibers, 62
leaky modes, 6
linear pulse compression, 40
long-period Bragg gratings, 70
Index

losses of silica fibers, 22
Marcuse formula, 10, 97
master oscillator fiber amplifier (MOFA), 91
master oscillator power amplifier (MOPA), 91
material dispersion, 24
mechanical splices, 63
microbends, 23
microstructure fibers, 55
misalignment, effect of, 64
mode amplitudes, 5
mode area, 12
mode-locked fiber lasers, 94
mode radius, 10
modes, 2
multi-phonon emission, 75
multimode fibers, 14
nanofibers, 19
neodymium-doped fiber amplifiers, 84
neodymium energy levels, 84
noise figure, 82
nonlinear phase shift, 34
nonlinear pulse compression, 40
nonlinear Schrödinger equation, 43
nonlinear spectral broadening, 35
nonlinearities, 32
non-silica glass fibers, 18
normal dispersion, 27
numerical aperture (NA), 1, 8, 11
optical circulators, 72
optical damage, 60, 80, 85
optical feedback, 85
optical isolators, 72
optical nonlinearities, 32
parabolic index profile fibers, 16
parametric amplification, 45
parametric nonlinearities, 32
phosphate glasses, 76
photonic bandgap fibers, 58
photonic crystal fibers (PCF), 55
photonic nanowires, 19
photosensitivity, 71, 75
plastic optical fibers (POF), 20
polarization beat length, 29
polarization controllers, 73
polarization-maintaining fibers, 30, 59
polarization mode dispersion (PMD), 50, 54
power losses, 21
propagation constant, 2, 3, 26
propagation losses, 21
pulse compression, 39–40
Index

pulsed fiber lasers, 93
pump cladding, 77
pump couplers, 69

Q switching, 93

Raman amplifiers, 46
Raman scattering, 32, 46
rare-earth-doped fibers, 74
refractive index, 56

saturation energy, 89
saturation power, 88
second-order dispersion, 26
self-focusing, 32, 85
self-phase modulation (SPM), 32–35
self-similar parabolic pulse evolution, 42
self-steepening, 33
shape birefringence, 30
silica glass, 17
silicate glasses, 74, 76
similariton fiber lasers, 95
similariton pulse propagation, 95
single-mode fibers, 9
single-polarization fibers, 31
soliton compression, 41
soliton fiber lasers, 94
soliton pulses, 37
splicing of fibers, 63
step-index fibers, 1, 8
stimulated Brillouin scattering (SBS), 48
stimulated Raman scattering (SRS), 46
stress birefringence, 30
stretched-pulse fiber lasers, 94
subwavelength fibers, 19
supercontinuum generation, 57
telecom fibers, 50, 53
telecom windows, 49
third-order dispersion (TOD), 26
thulium energy levels, 92
transmission fibers, 49
transmission losses, 21
two-photon absorption, 32
ultrashort pulses, 94
upconversion fiber lasers, 92

V number, 8, 10

wavebreaking-free fiber lasers, 95
waveguide dispersion, 24
waveguiding, principle of, 1
wavelength regions for data transmission, 49
ytterbium-doped fiber amplifiers, 84
zero-dispersion wavelength, 27
Rüdiger Paschotta is an expert in lasers and amplifiers, nonlinear optics, fiber technology, laser pulses, and noise in optics. He started his scientific career in 1994 with a PhD thesis in the field of quantum optics, and thereafter focused on applied research, covering a wide range of laser-related topics. He is the author or coauthor of over 100 scientific journal articles, over 120 international conference presentations, and several book chapters. He is also the author of the well-known *Encyclopedia of Laser Physics and Technology*. His successful academic career includes his habilitation at ETH Zürich and his attainment of the Fresnel Prize of the European Physical Society in 2002.

In 2004, Dr. Paschotta started **RP Photonics Consulting GmbH**, a technical consulting company based in Zürich, Switzerland (http://www.rp-photonics.com). He now serves companies in the photonics industry worldwide, working out feasibility studies and designs for lasers and other photonic devices, identifying and solving technical problems, finding suitable laser sources for specific applications, and performing staff training courses on specialized subjects. His work combines his extensive physics knowledge, his experience with an inventory of numerical modeling tools, a practically oriented mind, and a passion for constructive, interactive teamwork.