Index

A
anisotropic medium, 47

B
biaxial crystal, 48
birefringence, 35, 47
Brewster angle, 40
Brewster’s law, 40

circular polarization, 21
circular polarizer, 41
critical angle, 137
cutoff wavelength, 145

degree of polarization, 104
dextrorotatory medium, 71
differential group delay, 202
directional coupler, 187
coupling length, 187
supermodes, 188
dispersion coefficient, 150
dispersion compensators, 186
displacement current, 6
double refraction, 40

e
elliptical polarization, 23
eelliptical polarizer, 42
eelliptical polarizer/analyzer, 131
eellipticity angle, 28
extraordinary ray (e ray), 47
extraordinary refractive index, 49
extraordinary wave (e wave), 51, 53

F
Faraday effect, 71
Faraday isolator, 72
fiber optic current sensor, 193
fiber optic polarizers, 194
fiber optic wave plates, 191
fundamental mode, 145
Gaussian spot size, 148
modal field, 146
mode field diameter, 148

group velocity, 148

H
half-wave plate, 67
Hi-Bi fibers, 170
applications, 183
bow-tie fibers, 177
geometrical birefringence, 172
mode coupling parameter, 171
PANDA fibers, 177
side-pit fibers, 176
side-tunnel fibers, 176
stress-induced birefringence, 174
high-birefringence (Hi-Bi) fibers, 170

I
ideal circular polarizer, 130
index ellipsoid, 60
initial phase, 23

J
Jones matrices, 82
of circularly birefringent media, 93
of elliptic polarizers, 95
of elliptic retarders, 95
of HWPs, 85
of left-circular polarizers, 90
of linear polarizers, 83
of linear retarders, 85
of right-circular polarizers, 91
Jones vectors, 75
Index

Jones vectors (cont.)
 circular basis vectors, 88
 normalized form, 76
 orthogonal, 76
 with elliptical basis vectors, 94

L
 laevorotatory medium, 71
 left-circular polarization, 22
 linear polarization, 19
 linear polarizer, 82
 pass axis, 82
 linearly polarized modes, 140
 low-PMD fibers, 218

M
 Malus’ law, 41
 material dispersion coefficient, 150
 Maxwell’s equations, 3, 4, 49
 Mueller matrix, 107
 of circular polarizers, 112
 of linear polarizers, 111
 of linear retarders, 115
 of rotators, 116
 multimode fiber, 148
 intermodal dispersion, 148

N
 negative crystal, 49, 58
 Nicol prism, 66

O
 optic axis, 48
 optical activity, 71
 optical fiber, 137
 attenuation, 138
 guided modes, 141
 radiation modes, 142
 step-index, 137
 optically active substance, 70
 ordinary ray (o ray), 47
 ordinary refractive index, 49
 ordinary wave (o wave), 51, 54
 origins of birefringence, 161
 bender, 164
 core ellipticity, 161
 lateral stress, 163
 magnetic field, 165
 twist, 164

P
 phase velocity, 50
 plane polarized, 19
 plane wave, 7, 10, 50
 PMD compensator, 218
 PMD measurement
 frequency-domain technique, 213
 time-domain technique, 213
 PMD mitigation, 217
 PMD vector, 206
 Poincaré sphere, 122
 Poincaré sphere representation, 122
 of birefringent media, 125
 of polarizers, 125
 properties, 126
 polarization beamsplitter, 187, 189
 polarization controller, 192
 polarization eigenmodes, 51
 polarization ellipse, 23
 polarization mode dispersion (PMD), 169, 201
 birefringence vector, 207
 dynamical equation, 210
 first order, 218
 Jones matrix analysis, 211
 probability density function, 210
 second order, 218
 polarization-maintaining fibers, 170
 polarizers, 39
 polarizing angle, 40
 Polaroid, 39
 polished half-block, 194
 frequency domain technique, 213
 positive crystal, 49, 58
 Poynting vector, 13, 51
 principal axis system, 48
 principal dielectric permittivities, 48
 principal refractive indices, 48
 principal states of polarization, 204
<table>
<thead>
<tr>
<th>Index</th>
<th>227</th>
</tr>
</thead>
</table>

Q
quarter-wave plate, 35, 67

R
ray refractive index, 57
ray surfaces, 58
ray velocity, 56
refractive index, 7
retarder, 35
right-circular polarization, 22
Rochon prism, 67
rotator, 94

S
scalar wave equation, 140
Sellmeier equation, 150
single-mode fiber, 145
 dispersion-shifted, 154
 material dispersion, 148
 nonzero-dispersion-shifted, 154
 pulse dispersion, 148
 waveguide dispersion, 152
single-polarization single-mode (SPSM) fibers, 170
Snell’s law, 66
state of polarization (SOP), 19
step-index fiber, 137–139
 exact vector modes, 156
 HE and EH modes, 158
Stokes parameters, 97, 134
Stokes vector, 100
 determination of, 106
 of completely polarized light, 100
 of partially polarized light, 104
 of unpolarized light, 104
surface plasmons, 195

T
two-mode fiber sensors, 185

U
uniaxial crystal, 48

V
velocity of light, 6
Verdet constant, 71

W
wave equation, 6
wave refractive index, 51
wave velocity, 50, 54
waveguide parameter, 142
Wollaston prism, 69

Z
zero-dispersion wavelength, 154
Arun Kumar received his M.Sc. and Ph.D. degrees in physics from the Indian Institute of Technology Delhi (IITD), in 1972 and 1976, respectively. Since 1977, he has been on the faculty of the physics department at IITD, where he has been a professor since 1995. He has been a visiting scientist at the Technical University of Hamburg, Germany (1980–1981); the Opto-electronic Group, Strathclyde University, Glasgow, UK (1988); the National Institute of Standards and Technology, Boulder, Colorado (1993–1994); the University of Nice, France (1996); and the University of Jean Monnet, Saint Etienne, France (several times). He has authored/coauthored more than 90 research papers in international journals and has supervised/co-supervised ten Ph.D. theses in the area of fiber and integrated optics.

A perturbation method for the analysis of rectangular-core waveguides, developed by Kumar and coworkers, is now known as the “Kumar method” in the literature. Kumar is a recipient of research fellowships from the Alexander von Humboldt Foundation of Germany (1980–1981) and the Indian National Science Academy (INSA) (1990–1992). His research interests are in the fields of optical waveguides, fiber and integrated optic devices, polarization mode dispersion, and plasmonic waveguides.

Professor Ghatak is the recipient of several awards, including the 2008 SPIE Educator Award in recognition of “his unparalleled global contributions to the field of fiber optics research, and his tireless dedication to optics education worldwide and throughout the developing world, in particular” and the 2003 Optical Society of America Esther Hoffman Beller Award in recognition of “his
outstanding contributions to optical science and engineering education.” He is also a recipient of the CSIR Shanti Swarup Bhatnagar Award, the 16th Khwarizmi International Award, the International Commission for Optics Galileo Galilei Award, and the Meghnad Saha Award (instituted by The University Grants Commission) for outstanding research contributions in theoretical sciences. He received a D.Sc. (Honoris Causa) from the University of Burdwan in 2007.