Index

A
accessory proteins, 27
acute toxicity test, 47
*Aequorea* bioluminescence, 13
*Aequorea victoria*, 23
aequorin, 12, 14
aequorin chimeras, 91
aggregation, 31
alkaline phosphatase, 102
anatomic localization, 132
anatomical structure, 131
*Anemonia majano*, 34
*Anemonia sulcata*, 34
anesthesia systems, 137
anthozoan species, 29
antibiotic susceptibility, 77
antimicrobial drugs, 49, 50
apoptosis, 88
ATP assays, 44
ATP *in vivo*, 87
ATP-sensing element, 89
autofluorescence, 55, 121
autoinducer, 6

B
bacteria–host interaction, 49
bacterial luciferase, 4
bacterial pathogenesis, 83
bactericidal effect, 50
bacteriophages, 77
beetle luciferase, 9
beroin, 14
bioavailable fraction, 80
biofilm-forming pathogens, 50
bioluminescence, 2
bioluminescence color, 8
bioluminescence imaging (BLI), 53
bioluminescence microscope, 142
bioluminescence resonance energy transfer (BRET), 106
bioluminescence tomography, 57, 129, 130
bioluminescence-based toxicity reporters, 81
bioluminescence-imaging reporters, 72
bioluminescent imaging, 56
bioluminescent *P. aeruginosa*, 50
bioluminescent viability/toxicity testing, 45
BRET, 106, 117
BRET-based cAMP sensor, 107
β-galactosidase, 102

C
*Ca*²⁺ indicators, 96
*Ca*²⁺-binding centers, 14
*Ca*²⁺-regulated photoproteins, 14
*Ca*²⁺-related photoproteins, 14
calcium dynamic, 91
calcium probe, 95
cameleon, 99
camgaroos, 95
cAMP, 106
cAMP signaling, 107
CAMYEL, 107
CANARY, 93
Case sensors, 95
caspase activity, 102
CCD cameras, 135
cell viability, 43
charge-coupled device, 137
chemiluminescence, 1
chromoproteins, 34
circadian control, 17
circadian rhythms, 19, 75
CMOS imagers, 137
coelenterazine-dependent luciferases, 46
coelenterazine, 12
complementary metal oxide
semiconductors (CMOS), 137
circadian rhythms, 19, 75
CMOS imagers, 137
coelenterazine-dependent luciferases, 46
coelenterazine, 12
complementary metal oxide
semiconductors (CMOS), 137
concentration–distribution model, 130
cross-talk, 137
cross-talk correction, 120
crystalloluminescence, 1
cyclic adenosine mono-phosphate
(cAMP), 106
Cypridina, 10
cytoplasmic ATP, 88
cytosol-targeted firefly luciferase, 88
D
dinoflagellate, 17
dinoflagellate bioluminescent system, 19
direct molecular imaging, 71
Discosoma, 29
DNA-binding domain, 113
DnaE, 116
dose–response, 48–49, 97
Dronpa, 36
DsRed, 29
E
early photon imaging, 130
emitter, 4
enumeration of pathogens, 77
enzymes, 102
evaluation of toxicity, 48
expression profile, 82
exteins, 116
F
firefly luciferase, 7
firefly luciferin, 7
fluorescence imaging, 53
fluorescence microscopy, 142
fluorescence molecular tomography (FMT), 129
fluorescence resonance energy transfer (FRET), 23, 95, 106
fluorescence tomography, 130
fluorescent molecular tomography, 57
fluorescent protein–aequorin, 93, 94
fluorescent reporters, 72
fluorescent sensor for ATP, 89
fluorophore formation, 24
FRET, 117
FRET-based calcium indicator, 99
functional imaging, 132
G
galactoside-luciferin conjugate, 102
Gaussia, 16
Gaussia luciferase, 46
G-CaMPs, 95
gene expression, 71
genetically encoded calcium indicators, 95
genotox- and cyto-toxicity, 80
GFP, 23
GFP mutants, 25
GFP variants, 25
GFP-based in vivo pH indicators, 105
Gluc, 46
Gonyaulax polyedra, 17
Green Fluorescent Protein (GFP), 23
H
halistaurin, 14
hydrogen peroxide, 104
HyPer, 104
I
identification of pathogens, 92
imaging devices, 135
imaging modalities, 72
imaging of tumor growth, 52
in vivo calcium assay, 92
in vivo calcium monitoring, 91
indirect imaging, 72
intein, 116
intein-mediated reconstruction, 116
IVET technology, 84

K
Kaede proteins, 39
Kaede-like proteins, 39
kindling, 34
kindling effect, 34

L
lactase promoter, 74
light calibration, 139
*Lingulodinium polyedrum*, 17
*Listeria monocytogenes*, 50
luciferase, 2
luciferase membrane-targeted, 88
luciferin, 2
luciferin administration, 52
luciferin delivery, 45
Lugal, 102
luminescent reporter genes, 52
luminous bacteria, 4
luminous species, 3
lux operon, 6
luxCDABE operon, 45

M
marine ostracods, 10
maturation rate, 32
mBanana, 32
mCherry, 32
*Metridia* luciferases, 16
mHoneydew, 32
microplates, 136
mnemiopsin, 14
monitoring of tumors, 53
monomeric mRFP1, 31
monomeric variant of DsRed, 31
mOrange, 32
moving transgenic mice, 141
mPlum, 32
mRaspberry, 32
mStrawberry, 32
mTangerine, 32
multiple gene expression, 74
mutants of fluorescent proteins, 28

N
N-acyl-homeserine lactone, 6

O
obelin, 14
oligomerization, 31
optical filters, 138
ostracod luciferases, 12
oxyluciferin, 7

P
pathogenic microorganisms, 50
pathogenicity, 49
Percival, 90
pericams, 95
pH sensor, 104
phantom studies, 132
phialidin, 14
pHluorins, 104
photoactivatable, 34
photobleaching, 121
photoconversion, 39
photodiodes, 136
photoisomerization, 25
photomultiplier tubes, 135, 136
photon-counting-based system, 141
photostability, 32
photoswitchable fluorescent protein, 39
photoswitching, 39
plate readers, 135
proliferation tests, 43
protein complementation assays, 113
protein maturation, 30
protein splicing, 116
protein–fragment complementation assay, 115
protein–protein interactions, 113, 124

Q
quantitative Ca^{2+} imaging, 97
R
ratiometric sensor, 104
red fluorescent protein, 29
red fluorescent protein variants, 33
reflection, 130
relative light units (RLU), 135
Renilla GFP, 27
Renilla luciferase, 46
Renilla luciferin–luciferase, 15
Renilla muellenri, 27
Renilla reniformis, 27
reporter gene expression imaging, 72
resonance energy transfer (RET), 106, 117
RLU, 135
rluc, 46
S
scattering, 55, 130
secreted luciferase, 10
semi-specific biosensors, 80
single-cell testing, 82
specific whole-cell biosensors, 81
split-protein assay, 115
split-protein strategy, 116
stress responses, 79
structure of the fluorophore, 23
switchable luciferases, 103
T
targeting signals, 91
tdTomato, 32
tetrameric DsRed, 31
thermoluminescence, 1
time course of bioluminescence, 9
toxic metals, 81
toxicity assays, 47
toxicity biosensor, 78, 79
toxicity values, 48
transcriptional factor p53, 73
transgenic reporter mouse, 74
transient expression monitoring, 82
triboluminescence, 1
troponin-based calcium sensor, 99
tumor-targeting light-emitting bacteria, 56
two-hybrid system, 113
3D fluorescent image, 129
V
Vargula, 10
viability assay, 44
viral infection, 76
viral pathogenesis, 76
W
whole-body bioluminescence imaging, 138
whole-cell biosensors, 78
X
Xanthomonas campestris, 50
Y
yellow fluorescent protein, 28
YFP, 28
Dr. Lubov Brovko is a Senior Research Associate at the Canadian Research Institute for Food Safety and an Adjunct Professor at the Department of Food Science, University of Guelph, Canada. She was born and raised in Moscow, Russia. Dr. Brovko graduated from Lomonosov Moscow State University (Moscow, Russia), Faculty of Chemistry, Department of Chemical Kinetics and Catalysis in 1973 with a Master of Science degree in Chemistry/Biochemistry. From 1973 to 1975 she worked at the Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University. In 1975, Dr. Brovko joined the Department of Chemical Enzymology (Faculty of Chemistry, Lomonosov Moscow State University) as a Junior Researcher and was employed there until 1997 as a Researcher, Senior Researcher, and Leading Researcher. In 1980, Dr. Brovko obtained her Ph.D., and she began working in the area of analytical applications of enzymes in biochemistry, microbiology, and cell physiology. In 1992 she obtained the degree of Doctor of Science.

In 1997 Dr. Brovko was appointed as a Senior Research Associate in the research group of Dr. M. W. Griffiths at the Department of Food Science and Canadian Research Institute for Food Safety, University of Guelph. In 1998 she became an adjunct professor at University of Guelph. She teaches the course “Applied Enzymology and Biotechnology,” which is offered to graduate students of the Food Science Department at the University of Guelph and to undergraduate students of the Chemistry Department (Biotechnology program) at Wilfrid Laurier University, Waterloo, Ontario, Canada.

Dr. Brovko has more than 30 years experience in investigation of bioluminescence, both basic properties and application in biochemistry, microbiology, immunology, and cell biology; she is a member and scientific advisor of the International Society for Bioluminescence and Chemiluminescence. Dr. Brovko has published more than 100 papers in peer-reviewed scientific journals, 5 book chapters, and a book, *Bioluminescence for Food and Environmental Safety* (SPIE Press). Current research interests include the development of luminescence-based methods for detection of bacterial pathogens in food and environmental samples, development of photodynamic methods for destruction and detection of bacteria, development of *in vivo* bioluminescence models for assessment of immunomodulation effects of food ingredients using bioluminescent pathogenic bacteria, and development of cell-based bioluminescence biosensors for the detection of pathogens.

Lubov Brovko lives with her husband of 39 years Alexander Brovko in Guelph, Ontario, Canada. They have two children and two grandchildren.