Index

A
Abbe error, 190, 191
aberration, 114, 115, 380
 chromatic, 120, 121
aberrations, 159
absorber material, 260, 261, 433
acceleration, 191
accuracy, 357
actinic, 8
address, 268
adhesion promotion, 1, 54
adhesive, 178
advanced mechanical modeling technique, 412
AEBLE 150, 469
AIMS, 292
air bearings, 191
air filtration, 75
Airy pattern, 14
alignment, 2, 217
 mark, 218, 219
 system, 218
 target, 218
ALTA
 4700, 277
 system, 276
alternating phase-shifting mask, 332,
 334, 340, 418
aluminum oxide, 383
amines, 73, 75
annular illumination, 312, 313
antireflection coating, 133, 134, 139,
 173
 bottom, 135
 top, 136
APEX-E, 72
Applied Materials, 276
aqueous developer, 53, 68, 76, 78
Ar+ wavelength, 384
ArF excimer lasers, 154, 160
ArF optical lithographic technology, 358
ARPA-NIST standard, 460
ASM Lithography (ASML), 149, 151,
 196, 200, 225
aspect ratio, 78
aspheric surface, 178
aspherical lens elements, 184
astigmatism, 39, 40, 119
asymmetric magnification, 231
asymmetries in overlay targets, 247
atomic force microscope, 357
attenuated phase-shifting mask, 337,
 340
autocorrelation function, 85
autofocus system, 149, 184
axicon, 164, 165
azimuthal angle, 444
B
backscattered electron, 351
backscattering, 271, 272
BaF\textsubscript{2}, 170
bandwidth, 170
BARLi, 135
barometric pressure, 45, 180
baseline error, 222, 225
beam energy, 271
beam-angular divergence, 470
beam-delivery systems, 157
bearings, 190
air, 191
beryllium window, 463
bilayer process, 93
birefringence, 171, 179, 260
blazed diffraction grating, 316
bleaching, 124
borosilicate glass, 259
Bossung curve, 42
bottom antireflection coating, 135
Bragg condition, 425
bright field, 221
bubble lifetime, 377
bubbles, 376
butting error, 267

calcium fluoride, 38, 156, 169–172, 178, 183, 383
Canary Reticle, 287
Canon, 149, 151, 168, 175, 182, 200, 226
Canon quadrupole effect for stepper technology (CQuest), 312
Capacitance gauges for focusing, 186
capital
cost, 408
depreciation, 410
carbon deposition, 357
Carl Zeiss, 149, 168
catadioptric lens, 158, 175, 177, 183, 443
cell-projection
lithography, 474
e-beam, 474
centration, 178
characteristic curve, 23, 28
chemical
amplification, 71, 73, 443
epitaxy, 481
chemical-mechanical polishing, 248, 365, 379, 387
chemically amplified resist, 73, 75, 90
chill plates, 65
cromatic aberration, 120, 121
chromeless
mask lithography, 335
dhase-shifting lithography, 335, 340, 418
cromium, 260
wet etchant, 281
chuck nonflatness, 40
clocked, 179
cohherent
illumination, 16
light, 11
collection optics, 440
coma, 116, 118, 245
compaction, 172
competing positive and negative reactions, 54
conjugate, 42
consumables costs, 156, 417
contact holes, 53
contact printing, 147, 196, 197
contamination, 432
contrast, 24, 82
dhancement, 94
convection ovens, 65
cventional illumination, 311
Corning, 441
correlation length, 85, 86
cosine error, 191, 238
CO2 laser, 437
cost-of-ownership, 407, 410
critical-dimension variation, 87
Cymer, 161, 438
D

dark field, 221
 alignment, 226
data
 compression, 466
 format, 264
 volume, 258
decomposition, 172
deep ultraviolet photoresist, 70
defects, 374
derhydration, 55
dense optical proximity correction, 326
depth-of-field, 260
depth-of-focus, 32–35, 37, 41, 43, 166, 373, 377
 individual, 38, 40
 usable, 38, 40
design cost, 418
design for manufacturability, 343, 394
developer, 77
development, 2
 rate, 76, 81, 140
diazonaphthoquinone (DNQ), 68
 resist, 68, 69
die-by-die alignment, 227, 410
die-to-database inspection, 290
die-to-die inspection, 289
diethylaminotrimethylsilane (DEATS), 55
diffracted beams, 12
diffraction, 9, 12, 19, 111
 grating, 10
 limit, 114, 120, 378
diffractive optical element, 164, 315
diffusion, 90, 131, 386
 coefficient, 132
 length, 80
diffusion-enhanced silylating resist (DESIRE), 94
diffusivity, 91
Dill parameters, 124
dipole illumination, 311, 313
direct-write electron-beam lithography, 468
directed self-assembly, 480
discharge-produced plasma, 437
 source, 436
dispense nozzle, 60
dispersion, 168
distortion, 119, 159
Doppler shift, 188
dose control, 163
dose to clear, 23
double Gaussian, 167
double patterning, 395, 397, 399
downtime, 414
DSW4800, 149, 151
dual-stage exposure tool, 195
dyed resist, 81, 133, 139
dynamic dispense, 60

E
e-beam-sensitive resist, 278
E-zero, 23
EBM-7000, 265
edge bead, 64
 removal, 64, 67
edge-placement error, 326
electric field–induced metal migration, 288
electrical linewidth metrology, 361, 363
electron
 scattering, 271
 storage ring, 463
electron-beam
 assisted chemical etching, 290
 direct-write lithography, 466
 exposure system, 262
 lithography, 467
 writer, 262, 267
electrostatic
 charge, 274
 chuck, 432, 434
discharge, 287
encoder, 189
energy deposition, 467
enhanced global alignment, 221, 227, 228
environmentally stable chemically amplified positive, 75
equipment state, 415, 416
etalons, 159
Etec Systems, 262
EV Group, 200
excimer lasers, 151, 153
ArF, 154, 160
KrF, 154, 158, 160
exposure, 2
field, 4
latitude, 28, 29, 31, 125
time, 410
extreme ultraviolet exposure system, 430
lens, 430, 432
light sensor, 432
light source, 437
lithography, 425, 428
mask, 433
facilities cost, 421
FEN271, 280
FEP171, 278, 279
Fickian diffusion, 79
field
curvature, 39, 40, 119
size, 411
fifth-order distortion, 240
finite grid size, 391
flare, 174, 441
fly’s eye, 163
focus, 32, 159
control, 40
drilling, 46
focus-latitude enhancement exposure (FLEX), 46, 340
focused ion beam, 290
fogging, 274
forbidden pitches, 392
forward scattering, 271, 272
fragmentation, 325
Fresnel diffraction, 464
Fresnel-diffracted light, 196
front-opening unified pod, 148
Fujifilm, 278
Fujifilm FEP-171, 469
full-wafer scanner, 147
fused silica, 169, 171, 259, 383, 385
gap, 465
gas refills, 157
Gaussian beam, 270, 469
Gaussian system, 263
broadening, 271
round beam, 263
GCA Corporation, 149
GDSII, 275
GHOST, 272
Gigaphoton, 161
glass damage, 172
global alignment, 227
enhanced, 221, 227, 228
gridded optical proximity correction, 326
hammerhead, 321, 322
hardbake, 2, 67
haze, 287
HeNe laser, 187
hexamethyl-disilazane (HMDS), 55
hierarchy, 325
high-index immersion fluid, 382
high-volume microprocessor, 393
HL-800D, 474
Hopkins theory, 25
hot plates, 65
humidity, 66
Huygen’s principle, 110

I
IDEAL, 315
illumination, 7
 system, 162
 uniformity, 162
image
 fading, 193, 195
 log slope, 26, 28, 30, 31, 44, 89, 329, 446
 placement, 258
 error, 434
imaging, 7
immersion
 fluid, 372
 lithography, 371, 372
immiscible blocks, 480
imprint lithography, 479
IMS, 471
incoherent
 illumination, 18
 light, 16
individual depth-of-focus, 38, 40
infrared aberration control system, 180
injection locking, 160
inspection, 2
integral-squared pulse width, 156
interfering plane waves, 12
interferometric lithography, 400
intrafield
 error, 231
 registration, 365
inverse lithography, 342
ion-projection lithography, 477
IPRO4, 274
iso-dense bias, 317
isofocal
 dose, 42
 points, 42

J
JEOL, 265
jerk, 191

K
Kodak’s thin-film resist (KTFR), 51
KrF excimer lasers, 154, 158, 160
KrF lithography, 71
labor cost, 420
Lambert’s law, 122
lanthanum hexaboride, 263, 267
laser ablation, 290
laser-produced plasma, 437
 source, 436
leaching, 376
Leica, 264, 469
lens
 aberration reduction, 389
 distortion, 239
 field curvature, 40
 heating, 170, 171, 180
 pixel, 182
 reduction, 4
 factor, 167
lens-placement error, 245
leveling agents, 69
light-intensity distribution, 7, 13, 43
line-edge
 deviation, 87
 roughness, 82, 84, 86, 88–90, 358, 387, 444, 470
linearity, 258
linewidth, 20, 21
 control, 16, 390
 measurement, 351
 roughness, 82, 85, 358
lithium, 437
lithography cost, 407, 409
low k_1, 387
lutetium aluminum garnet, 383
Lyman-α wavelength, 384
M
Mack model, 140
magnification error, 231
maintenance cost, 420
manufacturing electron-beam exposure system, 262, 267
MAPPER, 471
mask, 2, 147, 259
cost, 418
defect inspection, 289
defect printability, 291
deformation, 460
distortion, 261
nonflatness, 434
registration error, 257
roughness, 447
usage, 417
mask-error factor, 327–329
master oscillator power amplifier, 161
master oscillator power oscillator, 162
matching error, 237
memory, 390
mercury-arc lamp, 151, 152
metrology cost, 420
Michelson interferometer, 187
Micralign, 199, 200
Micrascan, 152, 158, 176, 177, 183
microinjectors, 61
Micronic Laser Systems, 277
mirror reflectance, 429
mirror-surface figure, 442
mix-and-match lithography, 237, 422
Mo/Si
multilayer, 427
reflector, 427
model-based optical proximity correction, 324
modeling, 109
modulation transfer function, 17, 319, 327
Monte Carlo simulation, 271, 272
moving
average, 193
standard deviation, 193
multi-electron-beam lithography, 471
multilayer
reflector, 425
resist process, 92
multipass
gray, 269
writing strategy, 281
N
nanoimprint lithography, 479
National Institute of Standards and Technology, 164
Nd-YAG laser, 438, 464
negative resist, 2, 51, 52
next-generation lithography, 459
Nikon, 149, 151, 168, 175, 182, 196, 226, 227
NIST, 356
nitrogen, 68, 70
nonconcentric field, 422
matching, 247
nonlinear overlay error, 231
nonlinearity, 318
nontelecentric imaging, 430
normalized derivative, 28, 31
image log slope, 31, 446
novolak resin, 68, 69
NuFlare, 264
numerical aperture, 15, 16
maximum, 381
Nyquist frequency, 359
O
OASIS, 275
off-axis
alignment, 222
illumination, 166, 308, 311, 316, 339, 340, 379
Ohara, 170
on-axis illumination, 308
optical
contrast, 17, 19, 113
focusing, 186
lithography, 379, 395
limits, 389
mask requirement, 258
raster scanning system, 276
superlattice, 337
vortex, 338
optical proximity correction, 317, 322
dense, 326
gridded, 326
model based, 324
sparse, 326
optical-beam writer, 268
optical-pattern generator, 261
optics contamination, 431
optimum lens-reduction factor, 168
optimum NA, 35
outgassing, 431
outrigger phase-shifting mask, 337
overpriming, 56
overexposed, 31
overlay, 2, 215, 363
error, 119, 365
measurement, 364
models, 229
oxygen sensitivity, 51
126-nm light, 384
157-nm light, 384, 389
157-nm lithography, 183

P
packing density, 390
partial coherence, 35, 164–166
partially coherent light, 18
pattern collapse, 79
pellicles, 282, 285, 436
standoff distance, 282
Perkin-Elmer, 199, 200, 469
phase
error, 374
shifting, 379
phase defect, 435
phase edge, 332
photomask, 334
phase uniformity, 258
phase-grating alignment, 223
phase-measuring interferometry, 179
phase-shifting mask, 330, 331
alternating, 332, 334, 340, 418
attenuated, 337
outrigger, 337
rim-shift, 337
photoacid, 74
generator, 70, 81
photoactive compound, 68, 69, 81
photocluster, 76, 410, 421
photoelectron, 447
photomask, 2, 257
blank, 257
photorepeater, 147, 148, 259
photoresist, 7, 51
sensitivity, 411
pinhole, 62
formation, 63
pitch, 18
pixel count, 182
pixelated mask, 342
planarize, 27
PLASMASK, 94
point x-ray source, 462
point-of-use
developer dilution, 77
filtration, 61
poisoning, 75
poly(butene-1-sulfone) (PBS), 278
poly(hydroxystyrene), 71
polycapillary fiber, 464
positive resist, 2, 51
post-apply bake, 65
post-exposure bake, 2, 74, 79, 130, 131
power spectral density, 84, 88, 359
prealignment
 accuracy, 218
 system, 218
prebake, 65
precision, 357
pressure sensors for focusing, 186
pressure-induced fluctuations, 188
PREVAIL, 477
priming, 54
process control, 66
processor speed, 390
projection optical lithography, 480
PROLITH, 112
proximity
 correction, 272
 effect, 271
 printing, 147, 198, 199
puddle development, 77
pulse stretching, 155
pulse-to-pulse repeatability, 158
pumps, 61

Q
quadrupole illumination, 166, 312, 313
quantum yield, 448
Quasar, 312
queue, 415, 416

R
radiation chemistry, 448
rarefraction, 172
raster scanning, 263, 264
Rayleigh
 criterion, 16, 21, 34, 114
 depth-of-focus, 34
 resolution, 15
 unit of defocus, 33
reduction optics, 166
reflectance, 429
reflective
 notching, 138
 optics, 175
refraction, 37, 113
 refractive
 lens, 168
 optics, 120
 registration, 215
repetition rate, 154
resist
 coating, 1, 67
 consumption, 61
 containers, 61
 contrast, 24, 386
 cost, 417
 developer, 76
 over topography, 62
 sensitivity, 468, 470
resist-edge slope, 20
resolution, 10, 12, 16, 18, 21, 34, 377, 381
 enhancement technique, 41, 307, 314, 379
reticle, 147, 257, 259
 nonflatness, 260
 registration error, 236
rework, 419
rim-shift phase-shifting mask, 337
ring-field, 443
 optics, 176
rotation factor, 230

S
SAMPLE, 112
sample charging, 354
sampling, 242
scale error, 230
scaling laws, 379
SCALPEL, 475
scanning, 193
 electron microscope, 351, 352, 354
scatterometry, 360
Schott, 170, 441
SEBN1637, 280
secondary electron, 351
self-assembly, 480
self-calibration, 222
self-vignetting, 442
SEMI standard, 21
reticle format, 259
sensitivity of refractive lenses to temperature and pressure, 177
serifs, 320
shaped beam, 264, 270, 469
Shin-Etsu, 279
shot noise, 89, 444, 468, 470
Sigma7500, 277
Silicon Valley Group, 200
skew, 231
slit height, 412
softbake, 2, 65, 67
solubility, 51
solvent evaporation, 60
source-mask optimization, 341
spacer process, 398
spacing of elements, 178
sparse optical proximity correction, 326
spatial frequency, 17, 84, 85
speckle, 161
spectroscopic ellipsometry, 360
spherical aberration, 117, 118
spin coating, 57, 59
SRM 2069b, 356
SRM 2800, 356
stage precision, 188, 231
stage-matching error, 239
standard mechanical interface, 148
standby time, 414
standing waves, 127
static dispense, 60
stencil mask, 477
step-and-repeat system, 3, 4, 163
step-and-scan, 179, 180, 193
model, 234
system, 4, 163
step-and-settle time, 410
stepper price, 408
stepper-track integration, 76
stitching, 181
stochastic
beam blur, 471
scattering, 476
stress birefringence, 171
striations, 69
stripe boundary, 266
strong phase shifting, 335
subresolution assist feature, 258, 321
suck-back, 62
Sumitomo NEB-33, 469
super-high-resolution illumination control (SHRINC), 312
surface
potential, 355
tension, 56, 78
surfactant, 79
SUSS MicroTec, 200
Mask Aligner, 199
SVG Lithography, 152, 175, 182, 183
swelling, 51
swing curve, 128, 129
synchrotron, 436, 463
radiation, 462
T
tandem stage, 196
t-BOC, 72, 73
Teflon AF, 283
telecentric lens, 233
temperature-induced fluctuation, 188
TEMPEST, 112
template, 479
temporal pulse length, 155
tetramethyl-ammonium hydroxide (TMAH), 68, 76, 77
theoretical contrast, 82
thermal distortion, 468
thermal-field emission source, 263
thermionic emitter, 263
thick resist, 37, 64, 67
thin-film optical effects, 125
thin-resist model, 35, 42, 43
third-order distortion, 240
thorium, 153
three-beam imaging, 314
through-the-lens, 221, 223
alignment, 223, 225
throughput, 410, 412, 421, 468
TiN, 135
tin, 437, 438
tool-induced shift, 364
top antireflection coating, 136
top-surface imaging, 93, 94
topcoat, 74, 376
total-integrated energy, 155
tracks, 67
translation error, 230
trapezoid error, 232
TRE, 151
trilayer resist process, 93
trimethylsilyldiethylamine (TMSDEA), 55
Tropel, 182
Twinscan, 196
two-beam imaging, 313
two-pass printing, 265
tyrranny of the asymptote, 389
U
ULE, 441
Ultratech, 151
Stepper, 149, 175
ultrathin resist, 62
underexposed, 31
usable depth-of-focus, 38, 40
utilization, 410, 414
UVIIHS resist, 75
V
vapor priming, 55, 56, 67
variable-shaped beam, 263
vector
scanning, 264
system, 264
vector-shaped beam, 268
vibration, 192, 410
virtual addressing, 269
viscosity, 57, 62
Vistec, 264, 471
W
wafer
expansion, 220
heating, 473
scaling, 231
stage, 149, 187
steppers, 3, 4, 147
wafer-edge defects, 375
wafer-induced shift, 365
water, 382
temperature, 374
wavefront error, 116
wavelength, 15
working distance, 175
Wynne–Dyson design, 176
X
x-ray
lithography, 459
mask fabrication, 461
source, 462
xenon, 436, 439
Y
yaw, 190
Z
Zeiss, 182
ZEP 7000, 279, 280
Zernike polynomials, 116
zero-level alignment strategy, 224
Zerodur, 238, 441
zoom optics, 165
Harry J. Levinson is a Senior Fellow and manager of GLOBALFOUNDRIES’s Strategic Lithography Technology Department, which is responsible for advanced lithographic processes and equipment. He started his career in bipolar memory development at AMD, then spent some time at Sierra Semiconductor and IBM, before returning to AMD—now GLOBALFOUNDRIES—in 1994. During the course of his career, Dr. Levinson has applied lithography to many different technologies, including bipolar memories, 64Mb and 256Mb DRAM development, the manufacturing of applications-specific integrated circuits, thin-film heads for magnetic recording, flash memories, and advanced logic. He was one of the first users of 5× steppers in Silicon Valley and was an early participant in 248-nm and 193-nm lithography. He also served for several years as the chairman of the USA Lithography Technology Working Group that participates in the generation of the lithography chapter of the International Technology Roadmap for Semiconductors. He has published numerous articles on lithographic science, on topics ranging from thin-film optical effects and metrics for imaging, to overlay and process control, and he is the author of two books, Lithography Process Control and Principles of Lithography. He holds over 40 U.S. patents. He is an SPIE Fellow and formerly chaired the SPIE Publications Committee. He has a BS in engineering from Cornell University and a PhD in Physics from the University of Pennsylvania.