References

17. Lambda Research Corporation, “OSLO.” computer software.

18. ZEMAX Development Corporation, “ZEMAX.” computer software.

Index

aberrations
 general, 65
 RMS wavefront, 75
 Siedel, 66
 Zernike polynomials, 66
absorbing boundary, 134
adaptive optics, 73
aliasing, 23, 26, 30, 52, 57, 107, 110, 115, 120, 122, 124, 133, 141, 172
Ampère’s law, 3–5
apodization, 66

borosilicate crown glass (BK7), 84

charge, 2
 elementary, 2
coherence diameter, 158, 159, 164
coherence factor, 158, 159, 175, 179, 181, 184
coherence radius, 159
continuity equation, 2
convolution, 39
 in diffraction, 15, 104
 in imaging, 77, 79
 in one dimension, 41
 in two dimensions, 42
 integral, 40
 theorem, 41, 43, 99
correlation, 43
 integral, 43
 theorem, 43
Coulomb’s law, 4
current
 free current density, 2, 5
deformable mirror, 73
derivative, 51, 54
diffraction, 9
 Fraunhofer, 11, 13, 55, 58
 Fraunhofer approximation, 11, 55
 Fresnel, 9
 angular spectrum computation, 95
 convolution form, 88
 convolution integral, 88
 FT form, 88, 116
 one-step computation, 90
 Talbot imaging, 113
 two-step computation, 92
 generalized Huygens-Fresnel integral, 104
Dirac delta function, 12, 107, 185
electric permittivity, 5
electric susceptibility, 5
Faraday’s law, 3–5
Fourier transform
 forward
 continuous, 15
 discrete, 11, 16
 fractional, 104
 inverse
 continuous, 15
 discrete, 17
 two-dimensional, 35
geometric optics, 1
 lensmaker’s equation, 103
 ray matrices, 102
 ray transfer, 103
 Snell’s law, 103
 thin lens, 103
gradient, 50, 52–54
Helmholtz equation, 7
imaging
cohercent, 77
general, 77
incoherent, 79
inner scale, 155
isoplanatic angle, 158, 163, 164
lenses
phase retardance, 58
pupil function, 66
log-amplitude variance, 163, 164, 179
Lorentz force law, 2
magnetic permeability, 5
magnetic susceptibility, 5
magnetization density, 2
Maxwell’s equations, 1, 3–5, 156
mutual coherence function, 158
normalized aperture coordinates, 66
Nyquist sampling criterion, 21, 23, 31,
32, 115, 123
Nyquist sampling frequency, 21
operator notation, 89
outer scale, 155
paraxial approximation, 8
point source, 65, 107, 110, 146, 159,
175, 180, 183
model, 107–112, 175, 177, 178,
181
polarization density, 2
power spectral density, 166
phase, 158
refractive index, 155
probability density function (PDF), 44
pupil
entrance, 65
exit, 65
Rytov method, 157, 163
Sellmeier equation, 84
signal
Gaussian, 31
Gaussian, quadratic phase, 33
sinc, 30
spatial frequency, 122
Strehl ratio, 82
structure function, 47, 48, 50, 153, 166,
181, 184
of phase screen, 181
phase, 158, 163, 172, 181
potential temperature, 153
refractive index, 154
velocity, 153
wave, 158, 160, 179
structure parameter
potential temperature, 153
refractive index, 154, 158
velocity, 153
super-Gaussian, 134, 137, 146
Taylor frozen-turbulence hypothesis,
155
wave
Gaussian beam, 7, 9, 113, 157
planar, 7, 9, 11, 13, 157, 163
spherical, 7–9, 12, 61, 65, 108,
116, 118, 141, 157, 159, 163
wave equation, 6, 157
wavefront sensor, 73
wavelength, 1, 7, 55, 84, 85
Whittaker-Shannon sampling theorem,
21
Jason D. Schmidt is a Major in the U.S. Air Force and an assistant professor of electro-optics at the Air Force Institute of Technology in the Department of Electrical and Computer Engineering. Previously, he was a research physicist at the U.S. Air Force Research Laboratory’s Starfire Optical Range. He received the doctoral degree in Electro-Optics from the University of Dayton. Dr. Schmidt has been an active researcher in optical wave propagation through atmospheric turbulence for ten years. He received the Young Investigator Award in 2008 from the Air Force Office of Scientific Research. Besides optical wave propagation, Dr. Schmidt’s research interests include free-space optical communications and adaptive optics.