Applied
Prismatic and
Reflective Optics

Dennis F. Vanderwerf
Contents

Preface... xiii

Chapter 1 Introduction and Background ... 1

1.1 Snell’s Law of Refraction ... 1
1.2 Optical Dielectric Materials ... 2
1.3 Fresnel Reflection at a Dielectric Surface .. 4
1.4 External Reflection at an Optical Surface ... 5
1.5 Internal Reflection at an Optical Surface ... 6
1.6 Reflection Phase Shifts at a Planar Interface ... 7
1.7 Antireflection and Reflection Coatings ... 9
1.8 Effective $f/#$ of a Converging Light Beam ... 9
1.9 Refraction and Translation of Skew Rays at Planar Surfaces 10
1.10 Convergent Beam through a Tilted Plate .. 13
1.11 Reflection and Translation of Skew Rays at Planar Surfaces 17
1.12 Reflection Matrix ... 18
1.13 Orientation of Viewed Images through Prisms 18
1.14 Intersection Coordinate Matrix ... 19
1.15 Three-Mirror Beam-Displacing Prism ... 21
1.16 Refraction Matrix ... 24
1.17 Four-Mirror Beam-Displacing Prism ... 25
1.18 90-deg Beam-Deviating Prism .. 28

References ... 32

Chapter 2 General Prisms and Reflectors ... 33

2.1 Equilateral Prism ... 33
2.2 Abbe Dispersing Prism ... 35
2.3 Pellin–Broca Dispersing Prism ... 36
2.4 Penta Prism ... 38
2.5 Right-Angle Prism ... 39
2.6 Porro Prism ... 40
2.7 Dove Prism ... 42
2.8 Brewster Laser-Dispersing Prism ... 44
2.9 Littrow Prism ... 46
Chapter 3 Polarization Properties of Prisms and Reflectors

3.1 Prisms Producing Polarized Light
- 3.1.1 Uniaxial double-refracting crystals .. 61
- 3.1.2 Nicol polarizing prism .. 61
- 3.1.3 Glan–Foucault polarizing prism .. 63
- 3.1.4 Glan–Thompson polarizing prism 64
- 3.1.5 Glan–Taylor polarizing prism ... 64
- 3.1.6 Beam-displacing polarizing prism 65
- 3.1.7 Wollaston polarizing prism .. 66
- 3.1.8 Nomarski polarizing prism .. 67
- 3.1.9 Rochon polarizing prism ... 67
- 3.1.10 MacNeille polarizing beamsplitter cube 68
- 3.1.11 Birefringent multilayer reflective polarizing film 70
- 3.1.12 Polarizing beamsplitter elements using birefringent polarizing film .. 71
- 3.1.13 Wire-grid polarizing beamsplitter 72
- 3.1.14 Polarizing beamsplitter using frustrated total internal reflection .. 73
- 3.1.15 Polarizing beamsplitter prism with common polarization output .. 74

3.2 Prisms Controlling the Polarization of Light
- 3.2.1 Fresnel rhomb retarders ... 75
- 3.2.2 Total-internal-reflecting cube-corner retarders 78
- 3.2.3 Phase-coated total-internal-reflecting right-angle prism retarders .. 80

3.3 Polarization Preservation in Prisms and Reflectors
- 3.3.1 Polarization-preserving total-internal-reflecting prism 82
- 3.3.2 Polarization-preserving two-piece reflective axicon 87
- 3.3.3 Polarization-preserving total-internal-reflecting cube-corner prism .. 89
- 3.3.4 Stokes parameters .. 89
- 3.3.5 Depolarizing cube-corner prism 90

3.4 Plane of Polarization Rotation Using Total-Internal-Reflecting Prisms and Reflectors
- 3.4.1 90-deg polarization-rotating prism with coaxial beam output .. 92
- 3.4.2 90-deg polarization-rotating prism with retroreflected beam output .. 92
Contents

3.4.3 90-deg polarization-rotating prism with orthogonal beam output ... 92
3.4.4 Double Fresnel rhomb polarization rotator with collinear beam output ... 93
3.4.5 Four-mirror 90-deg polarization rotator with collinear beam output ... 94

References ... 95

Chapter 4 Specialized Prism Types .. 97

4.1 Dispersing Prism ... 97
4.1.1 Refracting direct-vision prism .. 97
4.1.2 Reflective dispersing prisms with collinear output ... 98
4.1.3 Direct-vision prisms with wavelength tuning ... 99
4.1.4 Total-internal-reflecting dispersing prism ... 99
4.1.5 Multiprism negative dispersion .. 101
4.2 Refracting Achromatic Compound Prism ... 101
4.3 Anamorphic Prisms for Beam Compression and Expansion .. 103
4.3.1 Beam expander with orthogonal output ... 104
4.3.2 Beam compressor with coaxial output ... 105
4.3.3 Beam expander with collinear output ... 106
4.3.4 Wedge prism beam compressor/expander .. 107
4.3.5 Anamorphic prism pair with coaxial output ... 108
4.3.6 Multiprism dispersive compressors and expanders .. 109
4.4 Achromatic Anamorphic Prism ... 111
4.4.1 Air-spaced prism pair with coaxial output ... 111
4.4.2 Compound prisms with orthogonal output ... 113
4.4.3 Refracting/total-internal-reflecting prism pair with orthogonal output 113
4.5 A Misalignment-Tolerant Beam-Splitting Prism ... 116
4.6 Axicon Prism .. 116
4.7 A Variable Phase-Shifting Prism .. 116

References ... 119

Chapter 5 Prism and Mirror System Design, Analysis, and Fabrication 121

5.1 Prism Design and Analysis .. 121
5.1.1 Sectional element approach for prism design ... 122
5.1.2 Right-angle prism sections ... 124
5.1.3 Experiential design of multiple reflectors ... 124
5.1.4 Matrix methods for design and analysis ... 125
5.1.5 Evolutionary prism design using a genetic algorithm .. 126
5.1.6 A three-mirror tabletop lectern projector ... 127
5.1.7 Prism aberrations .. 128
Chapter 6 A Selection of Prism Applications ... 141

6.1 Laser Scanning .. 141
 6.1.1 Reflective scanning prism .. 141
 6.1.2 Refractive prism-beam scanning and steering 141
 6.1.2.1 Single-wedge prism .. 141
 6.1.2.2 Wedge prism pairs .. 143
 6.1.2.3 LADAR guidance system using prism pairs 145
 6.1.2.4 Rotating square-plate linear scanner 146
 6.2 Interferometry and Spectroscopy .. 149
 6.2.1 Laser interferometer with prism polarization rotator 149
 6.2.2 Polarization interferometer using a Wollaston prism 149
 6.2.3 Multipass optical cell for laser interferometer 150
 6.2.4 Nomarski polarized-light interferometer 151
 6.2.5 Aplanatic prism spectrograph ... 152
 6.3 Prismatic Optical Devices ... 153
 6.3.1 Prism switch for fiber-optic connections 153
 6.3.2 Laser gyro readouts ... 153
 6.3.3 Reflecting wedge prism for optical reader 155
 6.3.4 Total-internal-reflecting touch switch using a Dove prism 157
 6.3.5 Inspection device for window surfaces 158
 6.4 Viewing, Display, and Illumination Systems 159
 6.4.1 Direct-view system for a microdisplay 159
 6.4.2 Binocular surgical loupe with flare reduction 160
 6.4.3 Inversion prism for range finders 161
 6.4.4 Prism transforming transmitted intensity profile 161

References ... 163
Chapter 7 Projection Displays

7.1 Color-Separating and Color-Combining Prisms
- Three-channel Philips RGB separating prism
- Philips prisms in reflective LCD projection displays
- Crossed dichroic x-cube prisms for projection displays
- Prisms for digital light processing projection
- Other types of color-separating prisms for projectors

7.2 Polarizing Beamsplitters for Projection Displays
- MacNeille polarizing beamsplitters
- Cartesian polarizing beamsplitters
- Wire-grid polarizing beamsplitters in projection displays

7.3 Illuminators for Projection Displays
- Hollow tunnel integrators
- Solid light pipes
- Effect of light-pipe cross section on uniformity
- Solid microprismatic light homogenizer
- Tapered-tunnel illuminator for projection displays

Chapter 8 Microprismatic Arrays

8.1 Roof Prism Linear Array

8.2 Square Prismatic Hollow Light Guide

8.3 Circular Prismatic Hollow Light Guide

8.4 Luminaire with Contoured Prismatic Extractor

8.5 Elliptical Light Guide with Directional Output

8.6 Prismatic Backlighting Devices

8.7 Brightness Enhancement for Liquid Crystal Displays

8.8 Polarizing Prismatic Sheet

8.9 Prismatic Reflective Polarizer Film

8.10 LCD Backlights Producing Polarized Light

8.11 Prismatic Array Beamsplitters and Combiners

8.12 Polarization Converters Using Prismatic Arrays

8.13 Cube-Corner Arrays

8.14 Dove Prism Arrays

Chapter 9 Fresnel Lenses

9.1 Basic Refractive Fresnel Lens Design
- Design example: Fresnel lens collimator/searchlight

9.2 High-Transmission Fresnel Lens Doublet

9.3 Reflective Fresnel Lenses
- First-surface reflector design parameters
- Second-surface reflector design parameters
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Refractive Planar Circular Fresnel Lens Solar Applications</td>
<td>248</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Multilens solar furnace</td>
<td>248</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Multilens-array solar simulator</td>
<td>248</td>
</tr>
<tr>
<td>9.5</td>
<td>Refractive Meniscus Fresnel Lenses</td>
<td>248</td>
</tr>
<tr>
<td>9.6</td>
<td>Reflective Planar Linear-Focus Solar Concentrators</td>
<td>250</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Tilted linear-focus reflective solar concentrator</td>
<td>250</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Linear-focus concentrator using a linear Fresnel lens and a crossed linear total-internal-reflecting array</td>
<td>250</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Planar reflective spot-focus concentrator using orthogonal refractive and reflective linear Fresnel lenses</td>
<td>253</td>
</tr>
<tr>
<td>9.7</td>
<td>Curved Linear Fresnel Lens Solar Concentrators</td>
<td>255</td>
</tr>
<tr>
<td>9.8</td>
<td>Flexible Fresnel Lens Solar Concentrators</td>
<td>260</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Sectional planar solar concentrators</td>
<td>260</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Inflatable curved solar concentrators</td>
<td>260</td>
</tr>
<tr>
<td>9.9</td>
<td>Fresnel Lenses Using Total Internal Reflection</td>
<td>261</td>
</tr>
<tr>
<td>9.9.1</td>
<td>Low-profile overhead projector</td>
<td>262</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Curved catadioptric Fresnel lenses</td>
<td>262</td>
</tr>
<tr>
<td>9.9.3</td>
<td>Photovoltaic solar concentrator using total internal reflection</td>
<td>264</td>
</tr>
<tr>
<td>9.10</td>
<td>Fresnel Lenses for Rear-Projection Screens</td>
<td>264</td>
</tr>
<tr>
<td>9.11</td>
<td>Fresnel Lens Manufacture</td>
<td>265</td>
</tr>
<tr>
<td>9.12</td>
<td>Achromatic Fresnel Lenses</td>
<td>265</td>
</tr>
<tr>
<td>9.12.1</td>
<td>Combination of high- and low-dispersion materials</td>
<td>267</td>
</tr>
<tr>
<td>9.12.2</td>
<td>Achromatic catadioptric Fresnel lenses</td>
<td>267</td>
</tr>
<tr>
<td>9.12.3</td>
<td>Dispersion-compensated achromatic Fresnel lens</td>
<td>271</td>
</tr>
<tr>
<td>9.12.4</td>
<td>Design example: achromatic dual-grooved Fresnel lens for overhead projector</td>
<td>273</td>
</tr>
<tr>
<td>9.12.5</td>
<td>Achromatic zone plate using a Fresnel lens</td>
<td>274</td>
</tr>
<tr>
<td>9.13</td>
<td>Diffraction and Coherence Effects in Fresnel Lenses</td>
<td>276</td>
</tr>
<tr>
<td>9.13.1</td>
<td>Diffraction compensation in a Fresnel lens reflector</td>
<td>276</td>
</tr>
<tr>
<td>9.13.2</td>
<td>Phase-optimized Fresnel lens</td>
<td>277</td>
</tr>
<tr>
<td>9.13.3</td>
<td>Phase-optimized Fresnel lens for use in an IR intrusion detector</td>
<td>278</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>Afterword</td>
<td></td>
<td>285</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>287</td>
</tr>
</tbody>
</table>
Preface

This text deals primarily with the optics of refracting and reflecting planar surfaces in the form of prismatic refracting and reflecting components, and the design, analysis, and applications of these components. Optical prisms consist of multiple planar surfaces, constructed to a specified geometry and formed from optical glass or plastic. The surfaces may have thin-film coatings that contribute to their functionality. Optical prismatic elements can be classified into two general types: those that are used in imaging systems, such as binoculars or projectors, and those used in nonimaging systems, such as spectrometers, illuminators, and solar concentrators. In addition to well-known prism systems, new applications of prisms are being introduced in the fields of electro-optics, metrology, prismatic films and arrays, projection displays, and others.

Chapter 1 introduces and reviews the optical concepts that are useful for the topics developed in the succeeding chapters. In Chapter 2, some better-known prism types are discussed, along with the essential ray-trace equations that define their specific properties. This includes both single and compound prisms, along with cube-corner retroreflectors. Birefringent prisms and polarizing beam-splitting prisms that produce polarized light are discussed in Chapter 3, including prisms that affect the polarization state of light, such as polarization-preserving prisms and prisms that rotate the plane of polarization. Prisms with collinear and coaxial dispersion properties, achromatic multiprisms, and anamorphic designs for beam expansion and compression are examined in Chapter 4. In Chapter 5, several methods of prism design are reviewed, including some of the more recent methodologies. This chapter also covers prism fabrication, tolerancing, choice of optical material, and some mounting methods. Specific uses of prisms in optical systems, such as scanning, beam steering, spectroscopy, interferometry, light coupling and switching, and viewing and illumination are presented in Chapter 6. Chapter 7 covers the use of prisms as dichroic color beamsplitters and combiners, polarizers, and light-beam homogenizers and integrators in projection displays. Microprism arrays are very useful for light guides, luminaires, brightness-enhancement sheets, backlight displays, and sheet polarizers. These applications are detailed in Chapter 8. Last, Chapter 9 covers Fresnel lens optics and the use of both refractive and reflective lenses in illumination, solar concentration, and direct-view displays. Several design methods for producing achromatic and phase-corrected Fresnel lenses are also presented.

References and examples are drawn from specialized texts, journal articles, conference proceedings, trade publications, and patent literature. I wish to acknowledge the editorial assistance of Gwen Weerts of SPIE Press for her suggestions and contributions during the composition of this book.

Dennis F. Vanderwerf
Austin, Texas