Color Image Processing with Biomedical Applications
Color Image Processing with Biomedical Applications

Rangaraj M. Rangayyan
Begoña Acha
Carmen Serrano

SPIE PRESS
Bellingham, Washington USA
To Mayura, my wife,
for adding color to my life
Raj

To my father
Bego

To my big and colorful family
Carmen

Todo es de color (Lole y Manuel)
Contents

Preface xi
Acknowledgments xvii
Symbols and Abbreviations xxii

1 The Nature and Representation of Color Images

1.1 Color Perception by the Human Visual System

1.1.1 The radiant spectrum

1.1.2 Spectral luminous efficiency

1.1.3 Photometric quantities

1.1.4 Effects of light sources and illumination

1.1.5 Color perception and trichromacy

1.1.6 Color attributes

1.1.7 Color-matching functions

1.1.8 Factors affecting color perception

1.2 Representation of Color

1.2.1 Device-independent color spaces and CIE standards

1.2.2 Device-dependent color spaces

1.2.3 Color order systems and the Munsell color system

1.2.4 Color-difference formulas

1.3 Illustrations of Color Images and Their Characteristics

1.3.1 RGB components and their characteristics

1.3.2 HSI components and their characteristics

1.3.3 Chromatic and achromatic pixels

1.3.4 Histograms of HSI components

1.3.5 CMYK components and their characteristics

1.4 Natural Color, Pseudocolor, Stained, Color-Coded, and Multispectral Images

1.4.1 Pseudocolor images of weather maps

1.4.2 Staining

1.4.3 Color coding

1.4.4 Multispectral imaging

1.5 Biomedical Application: Images of the Retina

1.6 Biomedical Application: Images of Dermatological Lesions

1.7 Remarks
2 Acquisition, Creation, and Quality Control of Color Images 103

2.1 Basics of Color Image Acquisition 103
2.1.1 Color image sensors 103
2.1.2 Dark current correction 106
2.1.3 Demosaicking 106
2.1.4 White balance 109
2.1.5 Color transformation to unrendered color spaces 110
2.1.6 Color transformation to rendered color spaces 115

2.2 Quality and Information Content of Color Images 117
2.2.1 Measures of fidelity 118
2.2.2 Factors affecting perceived image quality: contrast, sharpness, and colorfulness 121

2.3 Calibration and Characterization of Color Images 124
2.3.1 Calibration of a digital still camera 125
2.3.2 Characterization of a digital still camera 127
2.3.3 International Color Consortium profiles 128

2.4 Natural and Artificial Color in Biomedical Imaging 129
2.4.1 Staining in histopathology and cytology 131
2.4.2 Use of fluorescent dyes in confocal microscopy 143
2.4.3 Color in fusion of multimodality images 146
2.4.4 Color coding in Doppler ultrasonography 150
2.4.5 Use of color in white-matter tractography 155

2.5 Biomedical Application: Endoscopy of the Digestive Tract 162
2.6 Biomedical Application: Imaging of Burn Wounds 163
2.6.1 Influence of different illumination conditions 166
2.6.2 Colorimetric characterization of the camera 168

2.7 Remarks 170

3 Removal of Noise and Artifacts 173

3.1 Space-Domain Filters Based on Local Statistics 174
3.1.1 The mean filter 175
3.1.2 The median filter 177
3.1.3 Filters based on order statistics 181

3.2 Ordering Procedures for Multivariate or Vectorial Data 184
3.2.1 Marginal ordering 185
3.2.2 Conditional ordering 185
3.2.3 Reduced ordering 187

3.3 The Vector Median and Vector Directional Filters 188
3.3.1 Extensions to the VMF and VDF 190
3.3.2 The double-window modified trimmed mean filter 190
3.3.3 The generalized VDF–double-window–α-trimmed mean filter 191

3.4 Adaptive Filters 191
3.4.1 The adaptive nonparametric filter with a Gaussian kernel 192
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2</td>
<td>The adaptive hybrid multivariate filter</td>
<td>194</td>
</tr>
<tr>
<td>3.5</td>
<td>The Adaptive-Neighborhood Filter</td>
<td>196</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Design of the ANF for color images</td>
<td>196</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Region-growing techniques</td>
<td>197</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Estimation of the noise-free seed pixel</td>
<td>201</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Illustrations of application</td>
<td>203</td>
</tr>
<tr>
<td>3.6</td>
<td>Biomedical Application: Removal of Noise Due to Dust in Fundus Images</td>
<td>210</td>
</tr>
<tr>
<td>3.7</td>
<td>Remarks</td>
<td>213</td>
</tr>
<tr>
<td>4</td>
<td>Enhancement of Color Images</td>
<td>215</td>
</tr>
<tr>
<td>4.1</td>
<td>Componentwise Enhancement of Color Images</td>
<td>216</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Image enhancement in the RGB versus HSI domains</td>
<td>216</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Hue-preserving contrast enhancement</td>
<td>217</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Enhancement of saturation</td>
<td>219</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Selective reduction of saturation</td>
<td>220</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Alteration of hue</td>
<td>221</td>
</tr>
<tr>
<td>4.2</td>
<td>Correction of Tone and Color Balance</td>
<td>223</td>
</tr>
<tr>
<td>4.3</td>
<td>Filters for Image Sharpening</td>
<td>229</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Unsharp masking</td>
<td>229</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Subtracting Laplacian</td>
<td>234</td>
</tr>
<tr>
<td>4.4</td>
<td>Contrast Enhancement</td>
<td>235</td>
</tr>
<tr>
<td>4.5</td>
<td>Color Histogram Equalization and Modification</td>
<td>239</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Componentwise histogram equalization</td>
<td>244</td>
</tr>
<tr>
<td>4.5.2</td>
<td>3D histogram equalization</td>
<td>246</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Histogram explosion</td>
<td>250</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Histogram decimation</td>
<td>251</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Adaptive-neighborhood histogram equalization</td>
<td>251</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Comparative analysis of methods for color histogram equalization</td>
<td>257</td>
</tr>
<tr>
<td>4.6</td>
<td>Pseudocolor Transforms for Enhanced Display of Medical Images</td>
<td>265</td>
</tr>
<tr>
<td>4.7</td>
<td>The Gamut Problem in the Enhancement and Display of Color Images</td>
<td>268</td>
</tr>
<tr>
<td>4.8</td>
<td>Biomedical Application: Correction of Nonuniform Illumination in Fundus Images</td>
<td>269</td>
</tr>
<tr>
<td>4.9</td>
<td>Remarks</td>
<td>272</td>
</tr>
<tr>
<td>5</td>
<td>Segmentation of Color Images</td>
<td>275</td>
</tr>
<tr>
<td>5.1</td>
<td>Histogram-based Thresholding</td>
<td>275</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Thresholding of grayscale images</td>
<td>276</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Thresholding of color images</td>
<td>279</td>
</tr>
<tr>
<td>5.2</td>
<td>Color Clustering</td>
<td>283</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Color feature spaces and distance measures</td>
<td>285</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Algorithms to partition a feature space</td>
<td>286</td>
</tr>
</tbody>
</table>
5.3 Detection of Edges
- 5.3.1 Edge detectors extended from grayscale to color
- 5.3.2 Vectorial approaches

5.4 Region Growing in Color Images
- 5.4.1 Seed selection
- 5.4.2 Belonging conditions
- 5.4.3 Stopping condition

5.5 Morphological Operators for Segmentation of Color Images
- 5.5.1 The watershed algorithm for grayscale images
- 5.5.2 The watershed algorithm applied to color images

5.6 Biomedical Application: Segmentation of Burn Images

5.7 Biomedical Application: Analysis of the Tissue Composition of Skin Lesions

5.8 Biomedical Application: Segmentation of Blood Vessels in the Retina
- 5.8.1 Gabor filters
- 5.8.2 Detection of retinal blood vessels
- 5.8.3 Dataset of retinal images and preprocessing
- 5.8.4 Single-scale filtering and analysis
- 5.8.5 Multiscale filtering and analysis
- 5.8.6 Use of multiple color components for improved detection of retinal blood vessels
- 5.8.7 Distinguishing between retinal arteries and veins

5.9 Biomedical Application: Segmentation of Histopathology Images
- 5.9.1 Color separation in histopathology images
- 5.9.2 Segmentation of lumen in histopathology images
- 5.9.3 Detection of tubules in histopathology images

5.10 Remarks

6 Afterword

References

Index

About the Authors
The Importance of Color

Color plays an important role in our visual world: we are attracted more by tones of color than by shades of gray. The human visual system (HVS) can sense, analyze, and appreciate more tones of color than shades of gray at a given time and under a given set of viewing conditions. The colors and skin tones of our bodies, the colors and texture of the clothes we wear, and the colors of the natural scenery that surrounds us are all innate aspects of our lives. Who would not be thrilled to view a meadow filled with a splash of colorful flowers? Who would not be mesmerized by the extravagant colors of corals and tropical fishes in a reef? Who would not be excited with a surprise gift of a bouquet of flowers with a burst of colors?

Color permeates our world and life. We are so accustomed to color that we use related words, for example, “colorful,” to describe nonvisual entities such as personalities. Indeed, a world without color would be very dull — and gray!

The Growing Popularity of Color Imaging

With the increasing popularity of computers and digital cameras as personal devices for education, research, communication, professional work, as well as entertainment, the use of images in day-to-day life is growing by leaps and bounds. Personal computers (PCs) have standard features and accessories for the acquisition of images via scanners, still cameras, and video cameras, as well as easy downloading of images from the Internet, the Web, or storage devices such as compact discs (CDs) and digital versatile (or video) discs (DVDs). The acquisition, manipulation, and printing of personal or family photos have now become an easy (and even pleasant!) task for an individual who is not necessarily at ease with computers. Needless to say, color is a significant aspect of all of the above.
From Grayscale to Color Image Processing

Digital image processing (DIP) — the manipulation of images in digital format by computers — has been an important field of research and development since the 1960s [1–12]. Much of the initial work in DIP dealt exclusively with monochromatic or grayscale images. (See the special issues of the *Proceedings of the IEEE*, July 1972 and May 1979, for historically significant papers on DIP.) In fact, the processing of images in just black and white (binary images) has been an important area with applications in facsimile transmission (fax) and document analysis.

As the knowledge and understanding of techniques for DIP developed, so did the recognition of the need to include color. With remote sensing of the Earth and its environment using satellites [13], the need also grew to consider more general representations of images than the traditional tristimulus or three-channel characterization of natural color images. Multispectral or hyperspectral imaging with tens of channels or several hundred bands of spectral sensitivity spanning a broad range of the electromagnetic spectrum well beyond the range of visible light is now common, with real-life applications including land-use mapping, analysis of forest cover and deforestation, detection of lightning strikes and forest fires, analysis of agricultural plantations and prediction of crop yield, and extreme weather or flood warning.

Nowadays, medical diagnosis depends heavily upon imaging of the human body. Most medical images, such as those obtained using X rays and ultrasound, are scalar-valued, lack inherent color, and are represented as monochromatic or grayscale images. However, (pseudo-)color is used for enhanced visualization in the registration of multimodality images. Limited colors are used to encode the velocity and direction of blood flow in Doppler imaging. Staining in pathology and cytology leads to vividly colored images of various tissues [14–17]. Even in the case of analysis of external signs and symptoms, such as skin rashes and burns, color imaging can play important roles in enhanced visualization using polarized lighting, transmission, and archival. The application of DIP techniques to images as above calls for the development of specialized techniques for the representation, characterization, and analysis of color.

Initial work on color image processing (CIP) was based on the direct (and simplistic) application of grayscale DIP techniques to the individual channels of color or multispectral images. Although some useful results could be obtained in this manner, it was soon realized that it is important to develop specialized techniques for CIP, taking into consideration the correlation and dependencies that exist between the channels [1–5, 12, 18–20]. (See the January 2005 special issue of the *IEEE Signal Processing Magazine* on color image processing.) Whereas several books are available on the science of color perception, imaging, and display [12, 21–28], very few books on DIP have sig-
significant examples, sections, or chapters on CIP [1–5, 11, 12, 20, 24], and fewer still are dedicated to CIP [18, 19, 29, 30]. In this book, we shall mainly consider techniques that are specifically designed for CIP.

The Plan of the Book

We begin with a detailed study of the nature of color images. In addition to natural color images, we take into consideration multispectral and pseudocolor images in specialized areas such as photogrammetric and biomedical imaging. Chapter 1 provides descriptions of the HVS, color perception, color-matching functions, and systems for the representation of color images. A pertinent selection of biomedical applications is provided at the end of each chapter, including diagnostic imaging of the retina and imaging of skin lesions.

In Chapter 2, we present details regarding the acquisition, creation, and quality control of color images. Despite the simple appearance and usage of digital cameras, the chain of systems and techniques involved in the acquisition of color images is complex; regardless, the science of imaging is now a well-developed and established subject area [12, 24, 31]. Several operations are required to ensure faithful reproduction of the colors in the scene or object being imaged, or to assure a visually pleasing and acceptable rendition of the complex tonal characteristics in a portrait; the latter hints at the need to include personal preferences and subjective aspects, whereas the former implies rigid technical requirements and the satisfaction of quantitative measures of image characteristics. In addition to processes involving natural color images, we describe techniques related to staining in pathology and the use of fluorescent dyes in confocal microscopy for imaging of biomedical specimens. We present biomedical applications including the acquisition of images of burn wounds and endoscopy.

In Chapter 3, we study the issue of noise and artifacts in color images as well as methods to remove them. The need to consider the interrelationships that exist between the components or channels of color images is emphasized, leading to the formulation of vector filters.

In spite of the high level of sophistication (and cost) of cameras and image-acquisition systems, it is common to acquire or encounter images of poor quality. Image quality is affected by several factors, including the lighting conditions, the environment, and the nature of the scene or object being imaged, in addition to the skills and competence of the individual capturing the image. The topic of image enhancement is considered in Chapter 4, including methods for hue-preserving enhancement, contrast enhancement, sharpening, and histogram-based operations.
Segmentation for the detection of regions of interest or objects is a critical step in the analysis of images. Although a large body of literature exists on this topic, it is recognized that no single technique can directly serve a new purpose: every application or problem demands the development of a specific technique that takes into account the particular characteristics of the images and objects involved. The problem is rendered more complex by the multichannel nature of color images. In Chapter 5, we explore several methods for the detection of edges and objects in color images. Several biomedical applications are presented, including the segmentation and analysis of skin lesions and retinal vasculature.

Chapter 6 provides a few closing remarks on the subjects described in the book and also on advanced topics to be presented in a companion book to follow.

The Intended Audience and Learning Plans

The methods presented in the book are at a fairly high level of technical and mathematical sophistication. A good background in one-dimensional signal and system analysis [32–34] is required in order to follow the procedures and analyses. Familiarity with the theory of linear systems, signals, and transforms, in both continuous and discrete versions, is assumed. Furthermore, familiarity with the basics of DIP [1–9] is assumed and required.

We only briefly study a few representative imaging or image-data acquisition techniques. We study in more detail the problems present with images after they have been acquired, and concentrate on how to solve the problems. Some preparatory reading on imaging systems, equipment, and techniques [12,24,31] would be useful, but is not essential.

The book is primarily directed at engineering students in their (post-)graduate studies. Students of electrical and computer engineering with a good background in signals and systems [32–34] are expected to be well prepared for the material in the book. Students in other engineering disciplines or in computer science, physics, mathematics, or geophysics should also be able to appreciate the material in this book. A course on digital signal processing or digital filters [35] would form a useful link, but a capable student without familiarity of this topic may not face much difficulty. Additional study of a book on DIP [1–9] can assist in developing a good understanding of general image-processing methods.

Practicing engineers, researchers, computer scientists, information technologists, medical physicists, and data-processing specialists working in diverse areas such as DIP, computer vision, pattern recognition, telecommunications, seismic and geophysical applications, biomedical applications, hospital infor-
mation systems, remote sensing, mapping, and geomatics may find this book useful in their quest to learn advanced techniques for the analysis of color or multichannel images.

Practical experience with real-life images is a key element in understanding and appreciating image analysis. We strongly recommend hands-on experiments with intriguing real-life images and technically challenging image-processing algorithms. This aspect can be difficult and frustrating at times, but provides professional satisfaction and educational fun!

Rangaraj Mandayam Rangayyan, Calgary, Alberta, Canada
Begoña Acha Piñero, Sevilla, España (Spain)
María del Carmen Serrano Gotarredona, Sevilla, España (Spain)
July 2011
Acknowledgments

Writing this book on the exciting subject of color image processing has been difficult, challenging, and stimulating. Simultaneously, it has also yielded more knowledge and deeper understanding of the related subject matter, and satisfaction as each part was brought to a certain stage of completion.

Our understanding and appreciation of related material have been helped by the collaborative research and studies performed with several graduate students, postdoctoral fellows, research associates, and colleagues. We thank the following for their contributions to this book:

- Dr. Mihai Ciuc, Universitatea Politehnica București, Bucharest, Romania, for his contributions to earlier research work and publications on color image processing as well as for providing several examples of filtered or enhanced images and related data.

- Dr. Fábio José Ayres and Shantanu Banik, University of Calgary, for help with image-processing algorithms and MATLAB® programming.

- Dr. Hallgrímur Benediktsson, Dr. Serdar Yılmaz, and Sansira Seminowich, University of Calgary, for providing images and information related to color imaging in histology and pathology.

- Dr. Paulo Mazzoncini de Azevedo Marques and Dr. Marco A.C. Frade, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil, for providing color images of skin ulcers and for their collaboration on related projects.

- Dr. Philippe Pibarot, Québec Heart and Lung Institute, Québec City, Province of Québec, Canada, for providing color Doppler echocardiographic images.

- Hanford Deglint, ITRES Research Limited, Calgary, Alberta, Canada, for providing CASI images of the campus of the University of Calgary and related notes.

- Dr. Enrico Grisan and Dr. Alfredo Ruggeri, Università degli Studi di Padova, Padova, Italy, for providing illustrations of their results of processing fundus images of the retina.

- Dr. Maitreyi Raman, University of Calgary, for providing images and notes on endoscopy.
• Dr. Myriam Oger, GRECAN — François Baclesse Cancer Centre, Caen, France, for providing histology images and related data.

• Dr. Karl Baum, Rochester Institute of Technology, Rochester, NY, for providing images, advise, and comments on multimodality image fusion.

• Patrick Weeden, Weather Central LLC, Madison, WI, for providing temperature prediction maps and related notes.

• Aurora Sáez Manzano, Departamento de Teoría de la Señal y Comunicaciones, University of Seville, Spain, for her invaluable assistance in implementing several algorithms described in this book and providing the resulting images.

• Irene Fondón García, José Antonio Pérez Carrasco, Carlos Sánchez Mendoza, Francisco Núñez Benjumea, and Antonio Foncubierta Rodríguez, Departamento de Teoría de la Señal y Comunicaciones, University of Seville, Spain, for their assistance.

• Dr. Juan Luis Nieves Gómez, Departamento de Óptica, Facultad de Ciencias, University of Granada, Spain, for providing the measurements of the sensitivity values for the Retiga 1300 camera by QImaging.

• Dr. Tomás Gómez Cía from Servicio de Cirugía Plástica y Grandes Quebrados (Hospitales Universitarios Virgen del Rocío, Sevilla) for taking the burn images.

• Shantanu Banik, Faraz Oloumi (University of Calgary), Hanford Deglint, Dr. Paulo Mazzoncini de Azevedo Marques, Dr. Denise Guliato (Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil), Dr. José I. Acha (University of Seville), and Dr. Mihai Ciuc for reviewing parts of the book.

• Garwin Hancock and Steven Leikeim, Department of Electrical and Computer Engineering, University of Calgary, for help with color-coded electrical and communications circuits.

• Enrique de la Cerda Cisneros (Seville, Spain) for taking our pictures.

• The anonymous reviewers for their careful reading and suggestions for improvement of the book.

The book has benefited significantly from illustrations and text provided by a number of researchers worldwide, as identified in the references and permissions cited. We thank them all for enriching the book with their gifts of knowledge and kindness. Some of the test images used in the book were obtained from the Center for Image Processing Research, Rensselaer Polytechnic Institute, Troy, NY, www.ipl.rpi.edu; the Digital Retinal Images for Vessel
Extraction (DRIVE) database, www.isi.uu.nl/Research/Databases/DRIVE; and the Structured Analysis of the Retina (STARE) database, www.ces.clemson.edu/~ahoover/stare; we thank them for the resources provided.

Several research projects provided us with the background, material, examples, and experience that have gone into the writing of this book. We thank the Natural Sciences and Engineering Research Council of Canada, the University of Calgary, the Comisión Interministerial para Investigaciones Científicas of Ministerio de Ciencia y Tecnología of Spain, and Universidad de Sevilla for supporting our research projects.

We thank the Killam Trusts for awarding (Raj Rangayyan) a Killam Resident Fellowship and the University of Calgary for awarding the “University Professor” position to facilitate work on this book.

We thank CRC Press for permission to use material from previous publications and the LaTeX stylefile for the book, and Shashi Kumar, LaTeX Help Desk, Glyph International, Noida, India, for assistance with the LaTeX stylefile.

We thank SPIE Press for inviting us to write this book and for completing the publication process in a friendly and efficient manner.

Rangaraj Mandayam Rangayyan, Calgary, Alberta, Canada
Begoña Acha Piñero, Sevilla, España (Spain)
María del Carmen Serrano Gotarredona, Sevilla, España (Spain)
July 2011
Symbols and Abbreviations

Bold-faced letters represent vectors or matrices. Variables or symbols used within limited contexts are not listed here; they are described within their context. The mathematical symbols listed may stand for other entities or variables in different applications; only the common associations used in this book are listed for ready reference.

arctan \(\text{inverse tangent, } \tan^{-1} \)
arg \(\text{argument of} \)
au \(\text{arbitrary units} \)
\(A \) \(\text{area} \)
AC \(\text{alternating current} \)
ADC \(\text{analog-to-digital converter} \)
AHMF \(\text{adaptive hybrid multivariate filter} \)
AMNFG2 \(\text{adaptive multichannel nonparametric filter with Gaussian kernel} \)
ANCE \(\text{adaptive-neighborhood contrast enhancement} \)
ANF \(\text{adaptive-neighborhood filter} \)
ANHE \(\text{adaptive-neighborhood histogram equalization} \)
ANN \(\text{artificial neural network} \)
ANNS \(\text{adaptive-neighborhood noise subtraction} \)
ATMF \(\text{alpha-trimmed mean filter} \)
AUC \(\text{area under the ROC curve} \)
AVIRIS \(\text{Airborne Visible/Infrared Imaging Spectrometer} \)
\(Av \) \(\text{camera aperture setting} \)
\(A_z \) \(\text{area under the ROC curve} \)
b \(\text{bit} \)
\(B, b \) \(\text{blue component} \)
B \(\text{byte} \)
BMP \(\text{bitmap} \)
cd \(\text{candela} \)
cm \(\text{centimeter} \)
\(C \) \(\text{cyan component} \)
CAD \(\text{computer-aided diagnosis} \)
CASI \(\text{Compact Airborne Spectrographic Imager} \)
CBIR \(\text{content-based image retrieval} \)
CCD \(\text{charge-coupled device} \)
CCITT Comité Consultatif International Téléphonique et Télégraphique
CD compact disc
CDF cumulative (probability) distribution function
CDR chroma dynamic range
CFA color filter array
CFM color filter mosaic
CIE Commission Internationale de l’Eclairage
CIECAM CIE color appearance model
CIE $L^*a^*b^*$ the CIE $L^*a^*b^*$ color space
CIE $L^*u^*v^*$ the CIE $L^*u^*v^*$ color space
CIP color image processing
CMC British Colour-Measurement Committee of the Society of Dyers and Colourists
CMOS complementary metal-oxide semiconductor
CMYK [cyan, magenta, yellow, black] representation of color
CRT cathode-ray tube
CT computed tomography
CYGM cyan, yellow, green, and magenta
d derivative or differentiation operator
dpi dots per inch
DAB diaminobenzidine
DAC digital-to-analog converter
DC direct current
DDF distance-directional filter
DICOM Digital Imaging and Communications in Medicine
DIP digital image processing
DNA deoxyribonucleic acid
DRIVE Digital Retinal Images for Vessel Extraction
DSC digital still camera
DT-MRI diffusion tensor MRI
DVD digital versatile (or video) disc
DW-MTMF double-window modified trimmed mean filter
exp (x) exponential function, e^x
E irradiance
$E[\cdot]$ statistical expectation operator
E_v illuminance
$E(\lambda)$ spectral irradiance
EBU European Broadcasting Union
ECG electrocardiogram
EHz exahertz = 10^{18} Hz
EM electromagnetic
Erf error function (integral of a Gaussian)
$f(m, n)$ a digital scalar or grayscale image, typically original or undistorted
Symbols and Abbreviations

\(f(x, y) \)
\(f(m, n), f_n \)
\(g(m, n) \)
\(g(x, y) \)
\(g(m, n), g_n \)
\(h(l) \)
\(h(m, n) \)
\(h(x, y) \)
\(H \)
\(H^H \)
\(H&E \)
\(HCI \)
\(HLS \)
\(HSI \)
\(HSV \)
\(HVS \)
\(I \)
\(I_v \)

- a scalar or grayscale image, typically original or undistorted
- an image where each pixel is a vector, a color image
- matrix or vector representation of an entire image
- CDF of image \(f \)
- false negative
- false-negative fraction
- field of view
- false positive
- false-positive fraction
- a digital scalar or grayscale image, typically processed or distorted
- a scalar or grayscale image, typically processed or distorted
- a color image
- matrix or vector representation of an entire image
- green component
- gigabyte
- gigahertz = \(10^9 \) Hz
- gastrointestinal
- generalized vector directional filter
- GVDF - double window - \(\alpha \)-trimmed mean filter
- hour
- data-dependent smoothing term
- impulse response of a discrete-space system
- impulse response of a continuous-space system
- entropy
- hue component
- as a superscript, Hermitian (complex-conjugate)
- transposition of a matrix
- hematoxylin and eosin
- \([\text{hue, chroma, intensity}]\) representation of color
- high-definition television
- \([\text{hue, lightness, saturation}]\) representation of color
- \([\text{hue, saturation, intensity}]\) representation of color
- \([\text{hue, saturation, value}]\) representation of color
- human visual system
- index of a series
- the identity matrix
- radiant intensity
- intensity component
- luminous intensity
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC</td>
<td>International Color Consortium</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IESNA</td>
<td>Illuminating Engineering Society of North America</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>j</td>
<td>index of a series</td>
</tr>
<tr>
<td>j</td>
<td>$\sqrt{-1}$</td>
</tr>
<tr>
<td>JBIG</td>
<td>Joint Bi-level Image (experts) Group</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Experts Group</td>
</tr>
<tr>
<td>k</td>
<td>kilo (1,000)</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz $= 10^3$ Hz</td>
</tr>
<tr>
<td>km</td>
<td>kilometer $= 10^3$ m</td>
</tr>
<tr>
<td>K</td>
<td>black component</td>
</tr>
<tr>
<td>K</td>
<td>kilo ($2^{10} = 1,024$)</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin (unit of absolute temperature)</td>
</tr>
<tr>
<td>K</td>
<td>covariance matrix</td>
</tr>
<tr>
<td>K_m</td>
<td>maximum spectral luminous efficacy</td>
</tr>
<tr>
<td>$K(\lambda)$</td>
<td>spectral luminous efficacy</td>
</tr>
<tr>
<td>lm</td>
<td>lumen</td>
</tr>
<tr>
<td>ln</td>
<td>natural logarithm (base e)</td>
</tr>
<tr>
<td>lx</td>
<td>lux, unit of illuminance</td>
</tr>
<tr>
<td>L</td>
<td>radiance</td>
</tr>
<tr>
<td>L_v</td>
<td>luminance</td>
</tr>
<tr>
<td>$L(\lambda)$</td>
<td>spectral radiance</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
</tr>
<tr>
<td>LDR</td>
<td>luminance dynamic range</td>
</tr>
<tr>
<td>LIDAR</td>
<td>light detection and ranging</td>
</tr>
<tr>
<td>LLMMSE</td>
<td>local linear minimum mean-squared error</td>
</tr>
<tr>
<td>LMMSE</td>
<td>linear minimum mean-squared error</td>
</tr>
<tr>
<td>LMS</td>
<td>long, medium, and short (wavelength)</td>
</tr>
<tr>
<td>LMS</td>
<td>least mean squares</td>
</tr>
<tr>
<td>LSB</td>
<td>least significant bit</td>
</tr>
<tr>
<td>LSI</td>
<td>linear shift-invariant</td>
</tr>
<tr>
<td>LUT</td>
<td>look-up table</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>max</td>
<td>maximum</td>
</tr>
<tr>
<td>min</td>
<td>minimum</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter $= 10^{-3}$ m</td>
</tr>
<tr>
<td>(m, n)</td>
<td>indices in the discrete space (image) domain</td>
</tr>
<tr>
<td>mod</td>
<td>modulus or modulo</td>
</tr>
<tr>
<td>M</td>
<td>radiant exitance</td>
</tr>
<tr>
<td>M</td>
<td>magenta component</td>
</tr>
<tr>
<td>M_v</td>
<td>luminous exitance</td>
</tr>
<tr>
<td>Symbol</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>MA</td>
<td>moving average</td>
</tr>
<tr>
<td>MB</td>
<td>megabyte</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz = 10^6 Hz</td>
</tr>
<tr>
<td>MLP</td>
<td>multilayer perceptron</td>
</tr>
<tr>
<td>MMF</td>
<td>marginal median filter</td>
</tr>
<tr>
<td>MMSE</td>
<td>minimum mean-squared error</td>
</tr>
<tr>
<td>MOS</td>
<td>metal-oxide semiconductor</td>
</tr>
<tr>
<td>MP</td>
<td>megapixels</td>
</tr>
<tr>
<td>MPEG</td>
<td>Moving Picture Experts Group</td>
</tr>
<tr>
<td>MR</td>
<td>magnetic resonance</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MRS</td>
<td>magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>MS</td>
<td>mean squared</td>
</tr>
<tr>
<td>MSE</td>
<td>mean-squared error</td>
</tr>
<tr>
<td>MVD</td>
<td>minimum vector dispersion</td>
</tr>
<tr>
<td>MVD/ED</td>
<td>minimum vector dispersion edge detector</td>
</tr>
<tr>
<td>MVR</td>
<td>minimum vector range</td>
</tr>
<tr>
<td>n</td>
<td>an index</td>
</tr>
<tr>
<td>nit</td>
<td>unit of luminance</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer = 10^{-9} m</td>
</tr>
<tr>
<td>NCD</td>
<td>normalized color difference</td>
</tr>
<tr>
<td>NE</td>
<td>normalized error</td>
</tr>
<tr>
<td>NMSE</td>
<td>normalized mean-squared error</td>
</tr>
<tr>
<td>NTSC</td>
<td>National Television System Committee (of the US)</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OECF</td>
<td>optoelectronic conversion function</td>
</tr>
<tr>
<td>$p_f(l)$</td>
<td>normalized histogram or PDF of image f</td>
</tr>
<tr>
<td>pixel</td>
<td>picture cell or element</td>
</tr>
<tr>
<td>pm</td>
<td>picometer = 10^{-12} m</td>
</tr>
<tr>
<td>$p(x)$</td>
<td>probability density function of the random variable x</td>
</tr>
<tr>
<td>P</td>
<td>dimension or number of elements in a multivariate pixel</td>
</tr>
<tr>
<td>$Pr(x)$</td>
<td>probability of the event x</td>
</tr>
<tr>
<td>$P_f(l)$</td>
<td>histogram of image f</td>
</tr>
<tr>
<td>PACS</td>
<td>picture archival and communication system</td>
</tr>
<tr>
<td>PAL</td>
<td>phase alternate line</td>
</tr>
<tr>
<td>PAS</td>
<td>periodic acid Schiff</td>
</tr>
<tr>
<td>PASM</td>
<td>periodic acid silver methenamine</td>
</tr>
<tr>
<td>PC</td>
<td>personal computer</td>
</tr>
<tr>
<td>PCA</td>
<td>principal component analysis</td>
</tr>
<tr>
<td>PCS</td>
<td>profile connection space</td>
</tr>
<tr>
<td>PDF</td>
<td>probability density function</td>
</tr>
<tr>
<td>PDF</td>
<td>portable document format</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PHz</td>
<td>petahertz = 10^{15} Hz</td>
</tr>
<tr>
<td>PMT</td>
<td>photomultiplier tube</td>
</tr>
<tr>
<td>Abbr.</td>
<td>Name</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>PPV</td>
<td>positive predictive value</td>
</tr>
<tr>
<td>PSF</td>
<td>point spread function</td>
</tr>
<tr>
<td>PSNR</td>
<td>peak signal-to-noise ratio</td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>the set of real numbers</td>
</tr>
<tr>
<td>\mathcal{R}^+</td>
<td>the set of nonnegative real numbers</td>
</tr>
<tr>
<td>\mathcal{R}^P</td>
<td>set of P-dimensional real numbers</td>
</tr>
<tr>
<td>[r, g, b]</td>
<td>the [red, green, blue] vector of a pixel; a variable in the RGB space</td>
</tr>
<tr>
<td>R, r</td>
<td>red component</td>
</tr>
<tr>
<td>RADAR</td>
<td>radio detection and ranging</td>
</tr>
<tr>
<td>RAM</td>
<td>random access memory</td>
</tr>
<tr>
<td>RBF</td>
<td>radial basis functions</td>
</tr>
<tr>
<td>RDM</td>
<td>reduced ordering using distance to the mean</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
</tr>
<tr>
<td>RGB</td>
<td>[red, green, blue] color representation</td>
</tr>
<tr>
<td>RIMM</td>
<td>reference input medium metric</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean-squared</td>
</tr>
<tr>
<td>RMSE</td>
<td>root mean-squared error</td>
</tr>
<tr>
<td>ROC</td>
<td>receiver operating characteristics</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>ROMM</td>
<td>reference output medium metric</td>
</tr>
<tr>
<td>ROS</td>
<td>region of support</td>
</tr>
<tr>
<td>RYK</td>
<td>red-yellow-black model for dermatological lesions</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>sr</td>
<td>steradian (unit of solid angle)</td>
</tr>
<tr>
<td>$sRGB$</td>
<td>standard RGB color space</td>
</tr>
<tr>
<td>S</td>
<td>saturation component</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SECAM</td>
<td>Séquentiel Couleur à Mémoire</td>
</tr>
<tr>
<td>SI</td>
<td>Système Internationale de Unités (International System of Units)</td>
</tr>
<tr>
<td>SMPTE</td>
<td>Society of Motion Picture and Television Engineers</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SONAR</td>
<td>sound navigation and ranging</td>
</tr>
<tr>
<td>SPD</td>
<td>spectral power distribution</td>
</tr>
<tr>
<td>SPECT</td>
<td>single-photon emission computed tomography</td>
</tr>
<tr>
<td>SSIM</td>
<td>structural similarity (index)</td>
</tr>
<tr>
<td>STARE</td>
<td>Structured Analysis of the Retina</td>
</tr>
<tr>
<td>STIR</td>
<td>short-tau inversion recovery (sequence in MRI)</td>
</tr>
<tr>
<td>t</td>
<td>time variable</td>
</tr>
<tr>
<td>T</td>
<td>a threshold</td>
</tr>
<tr>
<td>T</td>
<td>as a superscript, vector or matrix transposition</td>
</tr>
<tr>
<td>Th</td>
<td>threshold</td>
</tr>
<tr>
<td>THz</td>
<td>terahertz $= 10^{12}$ Hz</td>
</tr>
</tbody>
</table>
Symbols and Abbreviations

TIFF
 tagged image file format

TN
 true negative

TNF
 true-negative fraction

TP
 true positive

TPF
 true-positive fraction

Tr
 trace of a matrix

Tv
 camera exposure time setting

TV
 television

T1-W
 T1-weighted (MRI)

UCS
 uniform color space

UHF
 ultrahigh frequency

US
 United States (of America)

voxel
 volume cell or element

v
 volt

V
 value component

V(λ)
 spectral luminous efficiency or luminosity function

V′(λ)
 spectral luminous efficiency for scotopic vision

VD
 vector dispersion

VDED
 vector dispersion edge detector

VDF
 vector directional filter

VIBGYOR
 violet, indigo, blue, green, yellow, orange, red

VMF
 vector median filter

VOS
 vector order statistics

VR
 vector range

w
 filter tap weight; weighting function

w
 filter or weight vector

W
 watt

x_i
 a sample pixel (vector) of a color image

(x, y)
 image coordinates in the continuous space domain

X
 a set of sample pixels (vector) from a color image

XYZ
 color representation with the CIE coordinates

y_i
 a sample pixel (vector) of a color image

Y
 yellow component

Y
 intensity or luminance component

Y
 a set of sample pixels (vector) from a color image

YIQ
 [luminance, in-phase, quadrature] color representation

z_i
 a sample pixel (vector) of a color image

Z
 a set of sample pixels (vector) from a color image

Z
 the set of all integers

ZHz
 zettahertz = 10^{21} Hz

∅
 null set

1D
 one-dimensional

2D
 two-dimensional

3D
 three-dimensional

4D
 four-dimensional
Color Image Processing

γ gamma (slope) of an imaging system or process
δ Dirac delta (impulse) function
η noise process
κ a kernel function
λ wavelength
μ the mean of a random variable
μm micrometer = 10^{-6} m
Π product
ρ_{RG} correlation between the R and G components
ρ(λ) reflectance of a surface
σ the standard deviation of a random variable
σ^2 the variance of a random variable
Σ sum
Φ radiant flux
Φ_v luminous flux
ω solid angle (steradian)
∇ gradient operator
\cdot dot product
\prime modified or transformed version of a variable
\prime', '' first and second derivatives of a variable
\prime'' inch
! factorial
* when in-line, convolution
* as a superscript, complex conjugation
number of
\bar{} average or normalized version of the variable
under the bar
\hat{} estimate of the variable under the symbol
\times cross product when the related entities are vectors
\forall for all
\in belongs to or is in (the set)
\} a set
\subset subset
\supset superset
\bigcap intersection
\bigcup union
\setminus set-theoretic difference between sets, except for
\equiv equivalent to
\mid given, conditional upon
\mapsto maps to
\leftrightarrow obtains (updated as)
\Rightarrow leads to
\Leftrightarrow transform pair
[] closed interval, including the limits
() open interval, not including the limits
<table>
<thead>
<tr>
<th>Symbols and Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
</tr>
<tr>
<td>(</td>
</tr>
<tr>
<td>(| |) norm of a vector or matrix</td>
</tr>
<tr>
<td>([x]) ceiling operator; the smallest integer (\geq x)</td>
</tr>
<tr>
<td>([x]) floor operator; the largest integer (\leq x)</td>
</tr>
</tbody>
</table>