Index

A
add/shift architecture, 189, 198
Agai—Sarukhanyan multiplicative theorem, 160, 229
Agayan (Agai—n) families, 37
A matrix, 282–284
A(n, k)-matrix, 238–241, 243, 244, 246
A(n, k)-type Hadamard matrix, 238
antipodal paraunitary (APU) matrices, 229

B
Baumert—Hall array, 155, 179, 280–283, 293, 298
block codes, 423, 435
block-cyclic Hadamard matrix, 217, 257, 259, 261
block-cyclic, block-symmetric matrix, 193
block-cyclic, skew-symmetric
Williamson—Hadamard Transform, 219

C
Cal—Sal matrix, 17, 70, 71, 73, 74
Chrestenson functions, 357–359
Chrestenson matrices, 357
Chrestenson transforms, 359–361, 363
ciphertext, 452, 453, 462, 464–467, 469
codewords, 420, 421, 423–429, 431, 432, 434, 435, 439, 441
complex reverse jacket transform (CRJT), 383
complex Walsh transform, 42
compression, 453
computational complexity, 52, 53
confusion property, 453, 464, 465
constellation symbols, 443
convolute product, 335
Cooley and Tukey, 51
correct matrix, 432
correct number, 432
cryptography, 450, 452, 453

decryption, 462
diffusion property, 453, 464–468
discrete cosine transform (DCT), 115–118, 129
discrete Hartley transform, 106–109
discrete orthogonal transform (DOT), 51–54
Dyadic order, 20

E
eigen decomposition, 10
eigenvalues, 10, 449
encryption, 450, 452, 453, 461–469
encryption key, 452, 453
terror-correcting codes, 419, 430
Index

F
fast Fourier transform (FFT), 51, 54
fast Haar transform, 52, 79, 81
Fourier matrix, 97, 99
Fourier transform, 24, 26

G
generalized Haar functions, 365
generalized Haar transform, 365–367, 369–372, 374, 376
generalized Hadamard matrix,
343–349, 351
generalized permutation matrix, 455, 456, 465, 470
generalized Yang matrices, 350, 351
generator matrix, 426, 428–431
Goethals–Seidel array, 37, 155, 275, 277, 278, 289–293, 300
Gray code, 21–23

H
Haar functions, 25–28
Haar matrices, 26, 27
Haar transform, 24–26, 28–30, 32
Hadamard (pointwise) product, 178
Hadamard codes, 419, 427–432
Hadamard matrix, 1, 2, 4, 6, 9–11, 18, 20, 21, 34–43
Hadamard matrix construction
algorithms, 250
Hadamard ordering, 29
Hadamard product, 160
Hadamard transform (HT), 1, 34, 93–97, 99, 112, 114, 122, 128, 129, 131, 133, 136–139, 143
Hadamard’s inequality, 39
Hamming distance, 424, 427, 431, 432
high-dimensional Hadamard matrices, 309
higher-dimensional complex matrices, 329
histogram, 465, 467

I
identity matrix, 2, 25, 28, 29, 32, 34, 41
information bits, 423, 424
integer slant-HTs, 136

J
jacket matrix, 383–386, 388, 389, 393–399, 404, 405, 407–409

K
Karlhunen–Loeve transform (KLT), 10
key space, 453, 464, 465
Kronecker product, 4, 12, 25, 32, 37, 38, 40, 60–62, 75, 83

L
Levenshtein, 431, 432, 445
linear codes, 424–426, 430
linear processing, 442–444
linear space, 425

M
M structure, 229
maximum likelihood detection, 441
maximum-likelihood decoding
algorithm, 443
multidimensional generalized
Hadamard matrix, 335, 336
multiple-user communication
systems, 435

N
n-dimensional Hadamard matrices, 309
(n, k)-block code, 423
natural order, 20
natural-ordered Hadamard system, 2

O
Ono–Sawade–Yamamoto, 296
orthogonal complex array, 279
orthogonal designs (ODs), 275, 278, 279, 289, 295
orthogonal matrix, 336
Index

P
- Paley matrices, 11–13
- parametric reverse jacket matrices, 392–395, 397, 399, 403, 404
- parametric slant-Haar transforms, 143–145
- parametric slant-Hadamard matrices, 132
- parity bits, 422–424
- permutation, 449, 455, 456, 458, 459, 465, 470
- Plotkin array, 246, 283, 293, 294
- Plotkin’s bound, 432
- proper Hadamard matrices, 310, 312

Q
- quaternion orthogonal array, 279

R
- r-dimensional matrices, 335
- Rademacher function, 351–353, 356, 357
- randomization method, 449, 450, 460
- randomization theorem, 450
- randomize, 454
- Randomized Discrete Orthogonal Transform (RDOT), 449, 450, 461, 462
- regular s-sequence, 174–176
- regular matrices, 155
- reverse jacket transform (RJT), 383, 405–414, 416

S
- semiregular s-sequence, 174, 176
- sequency, 19, 20, 28
- shift/add architecture, 267
- signal flow diagrams, 58
- skew-Hadamard matrices, 213
- skew-symmetric Hadamard matrix, 214, 216, 217, 220
- skew-symmetric matrices, 213, 217
- skew-Williamson–Hadamard matrices, 215
- skew-Williamson–Hadamard transforms, 213
- slant transform, 129, 130, 133, 139, 144
- slant-Hadamard matrix, 131
- space–time codes, 275, 300, 441, 444
- Spence arrays, 37, 155
- Sylvester matrices, 2, 4, 40
- Sylvester-type Hadamard matrices, 3 symmetric, 458, 459
- symmetric Williamson–Hadamard matrices, 213, 219, 222

T
- Tmatrices, 280–282, 284–290, 298
- template, 155, 156
- 3D Williamson array, 312–314, 317
- 3D complex Hadamard matrix, 332, 333
- transform, 449, 451, 453–469
- permuted discrete Fourier transform (PDT), 459, 462
- random matrix based discrete Fourier transform (RMDFT), 460, 462
- weighted permuted discrete Fourier transform (WPDT), 459, 462
- transmit diversity, 441, 443

U
- uniformly distributed random phase, 460
- uniquely decodable base code, 435, 436
- unitary permutation matrix, 455

V
- vector space, 425
- Vilenkin-Kronecker systems, 343

W
- Wallis–Whitman arrays, 37, 155
- Walsh–Hadamard transform (WHT), 1, 2, 7–9, 24, 41, 51, 52, 54, 55, 58–61
Walsh–Rademacher function, 352
Walsh–Hadamard discrete basis functions, 8
Walsh–Hadamard functions, 6, 8
Walsh–Paley matrix, 13
Walsh–Paley system, 11
weighted matrices, 310
Welch arrays, 275, 295, 300
Williamson array, 155, 156, 163, 164, 168
8-Williamson, 168, 169, 171, 173, 176, 177, 182
cyclic symmetric, 157, 158, 165
generalized, 155, 173, 177–179, 181
Williamson-type cyclic symmetric matrices, 191
Williamson–Hadamard transform, 189, 195, 196, 198, 206, 207
block, 195, 196, 206, 207

Y
Yang array, 283
Prof. **Sos S. Agaian** (Fellow SPIE, Fellow AAAS, Foreign Member, National Academy of Sciences of the Republic of Armenia) received the M.S. degree (*summa cum laude*) in mathematics and mechanics from Yerevan State University, Yerevan, Armenia, the Ph.D. degree in mathematics and physics (Steklov Institute of Mathematics Academy of Sciences of the USSR) and the Doctor of Engineering Sciences degree from the Academy of Sciences of the USSR, Moscow, Russia. He is currently the Peter T. Flawn distinguished professor in the College of Engineering at The University of Texas at San Antonio. He has authored more than 450 scientific papers and 4 books, and holds 13 patents. He is an associate editor of several journals. His current research interests include signal/image processing and systems, information security, mobile and medical imaging, and secure communication.

Prof. **Hakob Sarukhanyan** received the M.Sc. degree in mathematics from Yerevan State University, Armenia, in 1973, the Ph.D. degree in technical sciences and Doctor Sci. degree in mathematical sciences from the National Academy of Sciences of Armenia (NAS RA) in 1982 and 1999 respectively. He was Junior and Senior researcher at the Institute for Informatics and Automation Problems of NAS RA from 1973 to 1993, where he is currently a head of the Digital Signal and Image Processing Laboratory. He was also a visiting professor at the Tampere International Center of Signal Processing, Finland, from 1999 to 2007. His research interests include signal/image processing, wireless communications, combinatorial theory, spectral techniques, and object recognition. He has authored more than 90 scientific papers.

Prof. **Karen Egiazarian** received the M.Sc. degree in mathematics from Yerevan State University, Armenia, in 1981, the Ph.D. degree in physics and mathematics from Moscow State University, Moscow, Russia, in 1986, and the D.Tech. degree from Tampere University of Technology, Finland, in 1994. He has been Senior Researcher with the Department of Digital Signal Processing, Institute of Information Problems and Automation, National Academy of Sciences of Armenia. Since 1996, he has been an Assistant Professor with the DSP/TUT, where he is currently a Professor, leading the Transforms and Spectral Methods group. His research interests are in the areas of applied mathematics, signal/image processing, and digital logic.

Prof. **Jaakko Astola** (Fellow SPIE, Fellow IEEE) received B.Sc., M.Sc, Licentiate, and Ph.D. degrees in mathematics (specializing in error-correcting codes) from Turku University, Finland, in 1972, 1973, 1975, and 1978, respectively. Since 1993 he has been Professor of Signal Processing and Director of Tampere International Center for Signal Processing leading a group of about 60 scientists. He was nominated Academy Professor by the Academy of Finland (2001–2006). His research interests include signal processing, coding theory, spectral techniques, and statistics.