Bibliography

General

Astronomical Use

Historical

Vision

Bibliography

Design

Bibliography

Adjustment and Repair

Repairing and Adjusting Binoculars, Alii Service Notes, 1996.

Performance

Bibliography

Astronomical Scope Design and Performance

Index

Abbe–König prism, 51, 88
absorption, 76
achromatic, 35, 50
aerial image, 17
aerial image modulation (AIM), 50
afocal, 1, 3, 15, 49
afocal projection, 103–105
Airy disk, 57
angular distortion, 54
antireflection (A/R), 16
aperture stop (AS), 3, 4, 15, 17
apochromatic, 35
apparent field of view (AFOV), 3, 4, 24, 28, 37, 39, 70–74, 104
apparent visual magnitude, 55
aspheric, 37
astronomical binocular, 27, 28, 41, 99, 113
astrophotography, 35, 103
atmospheric scatter, 59
atmospheric seeing, 36, 60, 61
autocollimation, 111
baffle, 79–81
BaK1, 68
BaK4, 51, 65, 68, 77
ball head, 40
Barlow lens, 105
Bausch & Lomb (B&L), 24
binocular efficiency, 27
bird watching, 2, 14, 19, 116
BK7, 65, 67, 77
Brandon, 73
Brunton, 29, 31
Bushnell, 21, 107, 108
Cassegrain, 36, 37, 58
Celestron, 29, 47
center focus (CF), 62, 63, 99, 100
center focusing, 25
center of gravity, 5, 92, 106
chief ray, 3, 4, 15, 69
cleaning, 109
clear eye distance (CED), 116
coherence length, 60
collimation, 97, 98, 100, 110, 112, 113
collimator, 97, 110, 111, 113
coma, 36
compact binocular, 20, 100
contrast, 10, 11, 37, 49, 51, 52, 56, 59, 72, 79, 93
convergence, 97, 98, 112
cornea, 6
corrector, 37, 38
counterweight, 42, 44, 45
critical angle, 67
crosshair, 32, 97, 112
crystalline lens, 6, 12
damping, 43
dark-adapted, 7, 27, 39, 52
Dawes criterion, 57
daylight, 7, 10, 14, 20, 44, 51–53, 59
decoration, 42
depth perception, 48, 89
desiccants, 102
diffraction, 11, 37, 49, 57, 58, 60
diffraction spikes, 58
digiscoping, 103, 107
digital, 19, 54, 103, 105, 107
diopter, 12, 63, 64, 75, 92, 93, 99
diopter adjustment, 64, 92, 99, 100
diopter scale, 110, 111, 113
dipvergence, 97, 98, 110, 112
distortion, 24, 54, 70, 71, 93
divergence, 97, 98, 110, 112
Dobsonian mount, 46
Dobsonian scope, 46
Docter, 22, 24, 28
double stars, 57, 72
doublet, 34, 35, 70, 71, 92, 114
drift alignment, 44
durability, 18, 25, 29, 95
eccentric, 97, 112, 114
Edmund, 73
effective focal length (EFL), 3, 15, 35, 50, 64, 69, 72, 73, 88, 103, 105
efficiency, 20, 22, 27, 51–53, 116
empty magnification, 57
encoders, 47
entrance pupil (EP), 3, 4, 6, 51, 69, 103, 104, 111
environmental, 94, 110, 114, 116
equatorial, 41, 42, 44, 45, 47
erecting, 3, 17, 19, 21, 29, 50, 65, 69, 83, 85, 107, 108, 113
ergonomic, 5, 92
exit pupil (XP), 3, 4, 8, 9, 17, 27, 33, 52, 56, 68, 72, 75, 90, 92, 104, 112
exit pupil distance (XPD), 4, 70, 72, 73, 78, 88
external stabilizer, 86
eye relief (ER), 4
eye resolution, 10
eyepiece, 1, 4, 9, 15, 17, 18, 25, 28, 30, 36, 37, 39, 41, 46, 50, 62, 63, 69–72, 74–78, 82, 84, 87–90, 92, 97–101, 103–105, 107, 109, 111, 114
eyepiece projection, 103–105
f/number, 35, 37–39, 67, 72, 88, 103
F2, 68
field curvature, 37, 71
field glass, 15, 16, 82
field lens, 39, 69–71, 74, 78, 84
field stop, 37, 73, 74, 80
flexure, 85
focal length, 6, 12, 37, 39, 64, 70, 84, 105
focal ratio, 35
focus mechanism, 99, 101
fogging, 101, 102
fork mount, 41, 42, 45
fovea, 6
fresnel reflection, 76
Fried’s parameter (r_0), 60, 61
Fujinon, 23, 28
full-size, 19, 20, 22
Galilean, 15–17, 29, 82
Index

Garrett, 22–24
general purpose, 27
German equatorial mount (GEM), 41, 42, 44
giant-mounted, 19, 23
gimbal mount, 85
glare stops, 79
global positioning system (GPS), 47
globe effect, 54
GOTO drive, 41, 47
Greenwood Frequency, 61
Gregorian, 36, 81
gyroscope, 85, 86
handheld binocular, 53
heavy-duty tripod, 41
high magnification, 23, 24, 83
hinge, 1, 9, 62, 93, 96, 106, 114
holographic sight, 34
hunting rifle, 32
hyperopic, 64
image blur, 60, 106
image doubling, 68
image motion, 28, 60, 61
index of refraction, 60
individual focus, 25, 28, 63, 100
interchangeable eyepiece, 23, 30, 31, 72, 74
internal focus (IF), 63, 75, 99
internal focusing, 92
interpupillary distance (IPD), 1, 9, 48, 88, 89, 92, 93, 96, 98, 114
inverted Porro (IP) prism, 20, 89

IPD scale, 9, 96, 110
iris, 6, 33
iron sights, 32

Kellner eyepiece, 114
Keplerian, 17, 18, 33, 78
kidney bean effect, 71, 78
killflash, 25
Kowa, 31
Kronos, 24

laser, 25, 34, 76, 87, 90
law enforcement, 19, 25, 30, 32, 95, 101, 108
Leica, 22, 24
Leitz, 24
lens erecting, 17, 33, 69, 76
Leupold, 21, 22, 31
light transmission, 51, 67, 76
light-emitting diode (LED), 34, 87
lightweight, 15, 106
limiting magnitude, 47, 55, 56
limiting resolution, 51
line of sight (LOS), 6, 19, 23, 30, 33, 40–42, 46, 47, 54, 82, 85, 86, 90, 107
line pair, 11
Lippershey, 15
loupes, 16
luminance level, 7, 52

M13, 26
M17, 26, 52, 68, 114, 115
M19, 26, 68, 96, 100, 102, 114, 115
M22, 26, 115
M24, 26, 115
Magnesium fluoride (MgF₂), 76, 77	Nikon, 20–22, 24, 28, 31
magnification, 3, 4, 13, 15, 16, 19, 20, 23, 27, 29, 30, 32, 33, 35, 39, 48, 50–53, 57, 59, 72, 74, 83, 84, 90, 93, 98, 105, 112	nitrogen, 25, 102, 115
Maksutov–Cassegrain, 38, 58	nonmilitary binoculars, 25, 115
Marechal criterion, 58	O-ring, 95, 96, 99, 101, 102, 114
marginal ray, 15	Oberwerk, 28
mechanical shock, 94	objective, 1, 3, 15, 17–19, 22, 23, 25, 27, 30, 33, 35, 36, 50, 57, 62, 65, 67–69, 74–78, 80, 83, 87–92, 95, 97, 99, 100, 103, 105, 109, 111–114
Messier, 27, 55	obscuration, 35, 37, 58, 76, 81, 113
mid-size binocular, 19, 21, 22, 29	opera glass, 15
military binoculars, 4, 25, 26, 98	optical wedge, 86
Minox, 29	Orion, 73
Miyauchi, 24	orthoscopic eyepiece, 70
modular, 114	overall size, 19, 29, 88
modulation transfer function (MTF), 49, 50, 58, 79	pan/tilt head, 30, 40
monocular, 1, 27, 29, 30	parallax, 13, 32, 48, 75, 110–113
mounted binocular, 23, 27, 112	parallelogram, 40
multilayer, 76	Pentax, 20
muscular tremble, 53, 91	peripheral vision, 6
myopic, 64	permeation, 102
Nagler eyepiece, 71	perspective, 13, 48
nature study, 19, 22, 24, 30, 108, 116	phase coatings, 68
Newtonian, 36, 46, 58, 72	photopic response, 6, 14
night, 7, 10, 20, 44, 45, 51, 52, 60	photoreceptors, 6
night glass, 24, 26, 27, 52, 114	pincushion distortion, 54
night glass, 24, 26, 27, 52, 114	Plössl eyepiece, 37, 72
night glass, 24, 26, 27, 52, 114	polar alignment scope, 44
overall size, 19, 29, 88	polar axis, 41, 42, 44, 45
polycarbonate, 95	
Index

Porro prism, 18, 20, 21, 25, 27, 51, 67, 68, 77, 81, 88–90, 114
 Type 1, 18
 Type 2, 18
primary, 36–38, 81
prime focus photography, 105
principal rays, 69, 71, 78
probability of detection, 56
pupil, 3, 4, 7, 15, 17, 20, 27, 33, 39, 52, 55–58, 68, 72, 75
purging, 101

Quad-ring, 101, 102
Questar, 38, 45

rangefinder, 2, 25, 87, 90
Rayleigh criterion, 57
real field of view (RFOV), 3, 4, 16, 20–24, 26, 28, 29, 31, 36, 37, 74, 80, 104, 114
real image, 17, 82
rectilinear distortion, 54
red dot sight, 34
reduced tunnel diagrams, 77
refraction structure
 parameter (C_2^n), 61
refractive index, 67, 88
refractor, 42
relative sensitivity, 14
repurging, 102
resolution, 10, 11, 50, 52, 56, 57, 59, 61, 104, 110, 111, 113, 116
resolution chart, 11, 110
resolution test, 111
resolving power, 10, 11, 49, 57
reticle, 2, 25, 32, 34, 44, 75, 82, 87, 90, 95, 97, 99, 100, 110–113
retina, 6, 12
Ricco’s Law, 59
richest-field (tele)scope
 (RFT), 39
riflescope, 32–34, 69, 70, 74, 80, 82, 87, 95, 101
rolling ball effect, 54
roof prism, 18, 20, 21, 66, 68, 90, 92
Sard, 24
scene luminance, 6, 32, 51, 56, 82
Schmidt–Cassegrain, 37, 81
Schmidt–Gregorian, 30, 37
scintillation, 60
scotopic, 6
scotopic response, 14
sealing, 25, 29, 31, 94, 101
secondary, 35, 36, 58, 81
secondary chromatic
 aberration, 35
seeing, 60, 61, 72, 109
seeing disc, 60
setting circle, 47
settling time, 43
Smyth, 71, 84
spatial frequency, 49, 58
spider, 36, 58
spotting scope, 29, 30, 37, 75, 91, 107, 113, 116
stabilization, 19, 85, 90, 103
Index

stadiametric, 87	United States (US), 16, 26, 52, 68, 74, 77, 96, 102, 114
Steiner, 21–24, 28, 115	Universal, 73
stereo baseline, 1, 13, 18	vapor transmission rate (VTR), 102
stereo vision, 13, 48	veiling glare, 79
stereoscopic image, 1	Vernonscope, 73
stray light, 28, 52, 79, 81	vibration, 25, 43, 45, 52, 85, 86, 94, 106, 109
Strehl ratio, 58	vignetted exit pupil, 68
Swarovski, 20, 24, 30, 31, 101	vignetting, 71, 78, 90, 104
telephoto, 35, 92, 114	visual acuity, 51
TeleVue, 73	visual range, 59
testing, 10, 11, 55, 94, 110, 111, 113, 116	weapon sights, 34
transmission, 16, 51, 53, 55, 56, 58, 65, 76, 77, 102	wide angle, 24, 65, 71
tripod, 22, 23, 28, 30, 31, 40–45, 53, 85, 106, 111, 112	Zeiss, 18, 20, 21, 24, 29, 30, 37, 66, 92, 107, 108
turbulence, 60, 61	zeroing, 33, 82
Turmon, 29	zoom, 30, 32, 33, 69, 83, 84, 103
twilight, 7, 10, 20, 22, 24, 51, 61	United Kingdom (UK), 16, 26
Paul Yoder (BS Physics, Juniata College, 1947; MS Physics, Pennsylvania State University, 1950) began his career in optical engineering in 1948 under the guidance of Prof. David Rank in the Spectroscopy Laboratory at Penn State. He was employed for 10 years in the Optical Design Department of the U.S. Army’s Frankford Arsenal and then worked for 25 years on a variety of aerospace optical systems programs at Perkin-Elmer Corp. Following retirement in 1986, he was an optical engineering consultant, largely in the development of excimer laser recontouring of the human cornea for vision correction. He is a Fellow of SPIE and the OSA, has taught many short courses in optomechanical engineering for SPIE, and authored several books on optomechanics.

Daniel Vukobratovich is currently a Senior Principal Multi-Disciplinary Engineer at Raytheon Systems in Tucson, Arizona. Prior to Raytheon, he worked for fifteen years at the Optical Sciences Center, University of Arizona, where he still holds an adjunct faculty position. His primary field of interest is optomechanical design. He has authored over 50 papers, including chapters on optomechanics in standard reference works such as the IR Handbook and CRC Handbook of Optomechanics. He has taught optomechanics in 12 different countries, consulted for over 40 different companies, and holds several patents. He is a member and Fellow of SPIE, and he has received an IR-100 for work on metal matrix composite optical materials.