Hyperspectral Remote Sensing
Hyperspectral Remote Sensing

Michael T. Eismann
Dedicated with love to Michelle, Maria, and Katie
Contents

Preface .. xv
List of Acronyms ... xvii

Chapter 1 Introduction ... 1
 1.1 Hyperspectral Remote Sensing ... 2
 1.2 Elements of Hyperspectral Sensing .. 7
 1.2.1 Material spectroscopy ... 8
 1.2.2 Radiative transfer .. 9
 1.2.3 Imaging spectrometry .. 14
 1.2.4 Hyperspectral data processing .. 20
 1.3 Examples of Remote Sensing Applications ... 21
 1.4 Summary ... 33
References .. 33

Chapter 2 Optical Radiation and Matter .. 37
 2.1 Propagation of Electromagnetic Radiation ... 37
 2.1.1 Propagation in free space .. 38
 2.1.2 Propagation in dense media .. 39
 2.1.3 Plane waves in dense media .. 41
 2.2 Complex Index of Refraction ... 44
 2.2.1 Relationship with the complex dielectric constant 44
 2.2.2 Lorentz oscillator model ... 45
 2.2.3 Drude theory of strong conductors .. 52
 2.3 Propagation through Homogenous Media ... 53
 2.4 Reflection and Transmission at Dielectric Interfaces 56
 2.5 Reflection and Transmission at Conductor Interfaces 61
 2.6 Radiometry ... 69
 2.6.1 Point sources ... 71
 2.6.2 Lambertian sources .. 72
 2.6.3 Spherical scatterers ... 73
 2.7 Propagation through Scattering Media ... 74
 2.7.1 Mie scattering theory ... 76
 2.7.2 Rayleigh scattering theory ... 78
Chapter 3 Atomic and Molecular Spectroscopy .. 83

3.1 Quantum Mechanics .. 83
 3.1.1 Stationary states of a quantum mechanical system 85
 3.1.2 Interaction with electromagnetic radiation 86
 3.1.3 Born–Oppenheimer approximation .. 90

3.2 Electromagnetic Absorption and Emission 91
 3.2.1 Einstein coefficients .. 92
 3.2.2 Line broadening ... 93

3.3 Electronic Spectroscopy of Atoms .. 95
 3.3.1 Single-electron atoms .. 96
 3.3.2 Polyelectronic atoms .. 101

3.4 Rotational Spectroscopy of Molecules ... 107
3.5 Vibrational Spectroscopy of Molecules ... 111
 3.5.1 Diatomic molecules ... 111
 3.5.2 Polyatomic molecules .. 120

3.6 Electronic Spectroscopy of Molecules .. 123
3.7 Summary ... 130
3.8 Further Reading ... 130
References .. 131

Chapter 4 Spectral Properties of Materials ... 133

4.1 Apparent Spectral Properties .. 133
 4.1.1 Homogenous absorbing layer .. 134
 4.1.2 Opaque scattering layer ... 138
 4.1.3 Transparent scattering layer .. 141
 4.1.4 Multiple absorbing layers .. 142
 4.1.5 Multilayer dielectric thin films ... 144
 4.1.6 Rough-surface reflectance ... 146
 4.1.7 Emissivity and Kirchhoff’s law .. 150

4.2 Common Remote Sensing Materials .. 154
 4.2.1 Atmospheric gases ... 154
 4.2.2 Liquid water ... 158
 4.2.3 Vegetation .. 163
 4.2.4 Minerals ... 172
 4.2.5 Soils .. 179
 4.2.6 Road materials ... 186
 4.2.7 Metals .. 189
 4.2.8 Paints and coatings .. 191
Contents

Chapter 5 Remotely Sensed Spectral Radiance 199

5.1 Radiative Transfer Modeling 199
 5.1.1 Atmospheric modeling 201
 5.1.2 Moderate-resolution atmospheric transmission
 and radiation code 206
 5.1.3 Atmospheric path transmission 209
 5.1.4 Atmospheric path radiance 217
 5.1.5 Downwelling radiance 221

5.2 Remote Sensing Models 227
 5.2.1 Facet model for a solid surface 228
 5.2.2 Gaseous effluent model 233
 5.2.3 Shallow-water model 235

5.3 Summary 241

References 241

Chapter 6 Imaging System Design and Analysis 243

6.1 Remote Imaging Systems 243

6.2 Optical System Design 247
 6.2.1 Point spread function 247
 6.2.2 Optical aberrations 250
 6.2.3 Modulation transfer function 256
 6.2.4 Lens design 257

6.3 FPA Materials and Devices 266
 6.3.1 Quantum detectors 268
 6.3.2 Photoconductors 270
 6.3.3 Photodiodes 272
 6.3.4 Detector materials 275
 6.3.5 Detector noise 281
 6.3.6 Detector performance 285

6.4 Radiometric Sensitivity 286
 6.4.1 Signal and background radiance 288
 6.4.2 Focal plane irradiance 289
 6.4.3 Photoelectronic conversion 291
 6.4.4 Total system noise 292
 6.4.5 Total system performance 294

6.5 Spatial Sampling 296

6.6 Spatial Resolution 300
 6.6.1 Ground-resolved distance 301
Contents

6.6.2 System modulation transfer function 302
6.7 Image Quality ... 307
6.8 Summary .. 310
6.9 Further Reading ... 310
References .. 311

Chapter 7 Dispersive Spectrometer Design and Analysis 313

7.1 Prism Spectrometers .. 314
 7.1.1 Prism dispersion .. 315
 7.1.2 Prism spectrometer design 319
7.2 Grating Spectrometers .. 324
 7.2.1 Grating diffraction ... 325
 7.2.2 Grating spectrometer design 331
7.3 Imaging Spectrometer Performance 338
 7.3.1 Spatial and spectral mapping 338
 7.3.2 Spatial and spectral response functions 340
 7.3.3 Radiometric sensitivity 346
7.4 System Examples ... 348
 7.4.1 Airborne Visible/Infrared Imaging Spectrometer 349
 7.4.2 Hyperspectral Digital Imagery Collection Experiment .. 351
 7.4.3 Hyperion .. 353
 7.4.4 Compact Airborne Spectral Sensor 354
 7.4.5 Spatially Enhanced Broadband Array Spectrograph System .. 357
 7.4.6 Airborne Hyperspectral Imager 357
7.5 Summary .. 360
References .. 361

Chapter 8 Fourier Transform Spectrometer Design and Analysis ... 363

8.1 Fourier Transform Spectrometers 364
 8.1.1 Interferograms ... 366
 8.1.2 Spectrum reconstruction 368
 8.1.3 Spectral resolution .. 369
 8.1.4 Spectral range .. 370
 8.1.5 Apodization .. 372
 8.1.6 Uncompensated interferograms 373
8.2 Imaging Temporal Fourier Transform Spectrometers 373
 8.2.1 Off-axis effects .. 375
 8.2.2 Additional design considerations 376
8.3 Spatial Fourier Transform Spectrometers .. 377
8.4 Radiometric Sensitivity ... 380
 8.4.1 Signal-to-noise ratio ... 380
 8.4.2 Noise-equivalent spectral radiance ... 382
 8.4.3 Imaging spectrometer sensitivity comparison 384
8.5 System Examples ... 387
 8.5.1 Field-Portable Imaging Radiometric Spectrometer Technology 387
 8.5.2 Geosynchronous Imaging Fourier Transform Spectrometer 388
 8.5.3 Spatially Modulated Imaging Fourier Transform Spectrometer 390
 8.5.4 Fourier Transform Hyperspectral Imager ... 391
8.6 Summary ... 393
References ... 393

Chapter 9 Additional Imaging Spectrometer Designs 395
 9.1 Fabry–Pérot Imaging Spectrometer .. 395
 9.2 Acousto-optic Tunable Filter .. 400
 9.3 Wedge Imaging Spectrometer .. 403
 9.4 Chromotomographic Imaging Spectrometer .. 407
 9.4.1 Rotating direct-view prism spectrometer 408
 9.4.2 Multi-order diffraction instrument ... 413
9.5 Summary ... 415
References ... 415

Chapter 10 Imaging Spectrometer Calibration 417
 10.1 Spectral Calibration ... 417
 10.1.1 Spectral mapping estimation .. 418
 10.1.2 Spectral calibration sources .. 419
 10.1.3 Spectral-response-function estimation 420
 10.1.4 Spectral calibration example .. 421
 10.2 Radiometric Calibration .. 423
 10.2.1 Nonuniformity correction of panchromatic imaging systems 424
 10.2.2 Radiometric calibration sources .. 431
 10.2.3 Dispersive imaging spectrometer calibration 435
 10.2.4 Imaging Fourier transform spectrometer calibration 444
 10.3 Scene-Based Calibration .. 445
 10.3.1 Vicarious calibration .. 446
 10.3.2 Statistical averaging .. 446
Chapter 11 Atmospheric Compensation ... 451

11.1 In-Scene Methods ... 452
 11.1.1 Empirical line method ... 454
 11.1.2 Vegetation normalization .. 458
 11.1.3 Blackbody normalization .. 467
 11.1.4 Temperature–emissivity separation .. 476

11.2 Model-Based Methods .. 485
 11.2.1 Atmospheric Removal Program .. 485
 11.2.2 Fast line-of-sight atmospheric analysis of spectral hypercubes 490
 11.2.3 Coupled-subspace model ... 492
 11.2.4 Oblique projection retrieval of the atmosphere .. 495

11.3 Summary ... 498
References ... 500

Chapter 12 Spectral Data Models ... 503

12.1 Hyperspectral Data Representation ... 503
 12.1.1 Geometrical representation .. 504
 12.1.2 Statistical representation ... 507

12.2 Dimensionality Reduction .. 510
 12.2.1 Principal-component analysis .. 510
 12.2.2 Centering and whitening .. 513
 12.2.3 Noise-adjusted principal-components analysis ... 516
 12.2.4 Independent component analysis ... 520
 12.2.5 Subspace model .. 523
 12.2.6 Dimensionality estimation .. 526

12.3 Linear Mixing Model .. 529
 12.3.1 Endmember determination ... 531
 12.3.2 Abundance estimation ... 535
 12.3.3 Limitations of the linear mixing model ... 537

12.4 Extensions of the Multivariate Normal Model .. 539
 12.4.1 Local normal model ... 540
 12.4.2 Normal mixture model ... 544
 12.4.3 Generalized elliptically contoured distributions ... 549

12.5 Stochastic Mixture Model .. 551
 12.5.1 Discrete stochastic mixture model ... 553
 12.5.2 Estimation algorithm ... 555
 12.5.3 Examples of results .. 558
Chapter 13 Hyperspectral Image Classification

13.1 Classification Theory ... 563
13.2 Feature Extraction .. 569
 13.2.1 Statistical separability ... 570
 13.2.2 Spectral derivatives .. 572
13.3 Linear Classification Algorithms ... 573
 13.3.1 \(k \)-means algorithm ... 580
 13.3.2 Iterative self-organizing data analysis technique 584
 13.3.3 Improved split-and-merge clustering 586
 13.3.4 Linear support vector machine ... 589
13.4 Quadratic Classification Algorithms .. 593
 13.4.1 Simple quadratic clustering .. 594
 13.4.2 Maximum-likelihood clustering 595
 13.4.3 Stochastic expectation maximization 598
13.5 Nonlinear Classification Algorithms 605
 13.5.1 Nonparametric classification ... 606
 13.5.2 Kernel support vector machine ... 612
13.6 Summary .. 614
13.7 Further Reading .. 615
References ... 615

Chapter 14 Hyperspectral Target Detection

14.1 Target Detection Theory .. 617
 14.1.1 Likelihood ratio test .. 618
 14.1.2 Multivariate normal model ... 620
 14.1.3 Generalized likelihood ratio test 622
14.2 Anomaly Detection .. 624
 14.2.1 Mahalanobis distance detector ... 624
 14.2.2 Reed–Xiaoli detector ... 630
 14.2.3 Subspace Reed–Xiaoli detector ... 633
 14.2.4 Complementary subspace detector 635
 14.2.5 Normal mixture model detectors 638
14.3 Signature-Matched Detection ... 646
 14.3.1 Spectral angle mapper ... 646
 14.3.2 Spectral matched filter .. 649
 14.3.3 Constrained energy minimization 657
 14.3.4 Adaptive coherence/cosine estimator 658
 14.3.5 Subpixel spectral matched filter 662
14.3.6 Spectral matched filter with normal mixture model ... 666
14.3.7 Orthogonal subspace projection ... 669

14.4 False-Alarm Mitigation ... 674
 14.4.1 Quadratic matched filter ... 674
 14.4.2 Subpixel replacement model ... 676
 14.4.3 Mixture-tuned matched filter ... 678
 14.4.4 Finite target matched filter ... 680
 14.4.5 Least-angle regression ... 682

14.5 Matched Subspace Detection ... 684
 14.5.1 Target subspace models ... 685
 14.5.2 Subspace adaptive coherence/cosine estimator 689
 14.5.3 Joint subspace detector .. 692
 14.5.4 Adaptive subspace detector ... 694

14.6 Change Detection ... 695
 14.6.1 Affine change model ... 696
 14.6.2 Change detection using global prediction 698
 14.6.3 Change detection using spectrally segmented prediction 703
 14.6.4 Model-based change detection .. 707

14.7 Summary .. 712

14.8 Further Reading ... 714

References ... 714

Index ... 717
Preface

Hyperspectral imaging is an emerging field of electro-optical and infrared remote sensing. Advancements in sensing and processing technology have reached a level that allows hyperspectral imaging to be more widely applied to remote sensing problems. Because of this, I was asked roughly six years ago to serve as an adjunct faculty member at the Air Force Institute of Technology in Ohio to construct and teach a graduate course on this subject as part of their optical engineering program. As I searched for a suitable textbook from which to teach this course, it became apparent to me that there were none that provided the comprehensive treatment I felt the subject required. Hyperspectral remote sensing is a highly multidisciplinary field, and I believe that a student of this subject matter should appreciate and understand all of its major facets, including material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. There are many resources that suitably cover these areas individually, but none that are all inclusive. This book is my attempt to provide an end-to-end treatment of hyperspectral remote sensing technology.

I have been using this textbook in manuscript form to teach a one-quarter class at the graduate level, with Masters and Ph.D. students taking the course as an elective and subsequently performing their research in the hyperspectral remote sensing field. The amount of material is arguably too much to fit within a single quarter and would ideally be spread over a semester or two quarters if possible. The content of the book is oriented toward the physical principles of hyperspectral remote sensing as opposed to applications of hyperspectral technology, with the expectation that students finish the class armed with the required knowledge to become practitioners in the field; be able to understand the immense literature available in this technology area; and apply their knowledge to the understanding of material spectral properties, the design of hyperspectral systems, the analysis of hyperspectral imagery, and the application of the technology to specific problems.

There are many people I would like to thank for helping me complete this book. First, I would like to thank the Air Force Research Laboratory for their support of this endeavor, and my many colleagues in the
hyperspectral remote sensing field from whom I have drawn knowledge and inspiration during the 15 years I have performed research in this area. I would like to thank all of my OENG 647 Hyperspectral Remote Sensing students at the Air Force Institute of Technology who suffered through early versions of this manuscript and provided invaluable feedback to help improve it. In particular, I owe great thanks to Joseph Meola of the Air Force Research Laboratory, who performed a very thorough review of the manuscript, made numerous corrections and suggestions, and contributed material to Chapters 10 and 14, including participating in useful technical discussions concerning nuances of signal processing theory. I am very grateful for thorough, insightful, and constructive reviews of my original manuscript performed by Dr. John Schott of the Rochester Institute of Technology and Dr. Joseph Shaw of Montana State University on behalf of SPIE Press, as well as Tim Lamkins, Dara Burrows, and their staff at SPIE Press for turning my manuscript into an actual book. Additionally, I would like to acknowledge the support of Philip Maciejewski of the Air Force Research Laboratory for performing vegetation spectral measurements, the National Aeronautics and Space Agency (NASA) for the Hyperion data, the Defense Intelligence Agency for the HYDICE data, John Hackwell and the Aerospace Corporation for the SEBASS data, Patrick Brezonik and the University of Minnesota for the lake reflectance spectra, Joseph Shaw of Montana State University for the downwelling FTIR measurements, Bill Smith of NASA Langley Research Center for the GIFTS schematic and example data, and others acknowledged throughout this book for the courtesy of using results published in other books and journals.

Finally, this book would not have been possible were it not for the help and support of my wife Michelle and daughters Maria and Katie, who provided great patience and encouragement during the many hours that their husband and father was preparing, typing, and editing this book instead of giving time to them and attending to other things around our home. Now that this immense undertaking is completed, I hope to make up for some of what was lost.

Michael T. Eismann
Beavercreek, Ohio
March 2012
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>adaptive coherence/cosine estimator</td>
</tr>
<tr>
<td>ADC</td>
<td>analog-to-digital conversion</td>
</tr>
<tr>
<td>AHI</td>
<td>Airborne Hyperspectral Imager</td>
</tr>
<tr>
<td>AIRIS</td>
<td>Adaptive Infrared Imaging Spectroradiometer</td>
</tr>
<tr>
<td>AIS</td>
<td>Airborne Imaging Spectrometer</td>
</tr>
<tr>
<td>amu</td>
<td>atomic mass unit</td>
</tr>
<tr>
<td>AOTF</td>
<td>acousto-optic tunable filter</td>
</tr>
<tr>
<td>AR</td>
<td>antireflection (coating)</td>
</tr>
<tr>
<td>ARCHER</td>
<td>Airborne Real-Time Cueing Hyperspectral Enhanced Reconnaissance</td>
</tr>
<tr>
<td>ARM</td>
<td>Atmospheric Radiation Measurement (site)</td>
</tr>
<tr>
<td>ASD</td>
<td>adaptive subspace detector</td>
</tr>
<tr>
<td>ATREM</td>
<td>atmospheric removal program</td>
</tr>
<tr>
<td>AUC</td>
<td>area under (the ROC) curve</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>Airborne Visible/Infrared Imaging Spectrometer</td>
</tr>
<tr>
<td>BI</td>
<td>bare-soil index</td>
</tr>
<tr>
<td>BLIP</td>
<td>background-limited performance</td>
</tr>
<tr>
<td>BRDF</td>
<td>bidirectional reflectance distribution function</td>
</tr>
<tr>
<td>CBAD</td>
<td>cluster-based anomaly detector</td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled device</td>
</tr>
<tr>
<td>CCSMF</td>
<td>class-conditional spectral matched filter</td>
</tr>
<tr>
<td>CDF</td>
<td>cumulative distribution function</td>
</tr>
<tr>
<td>CEM</td>
<td>constrained energy minimization (detector)</td>
</tr>
<tr>
<td>CFAR</td>
<td>constant false-alarm rate</td>
</tr>
<tr>
<td>CMOS</td>
<td>complementary metal-oxide semiconductor</td>
</tr>
<tr>
<td>COMPASS</td>
<td>Compact Airborne Spectral Sensor</td>
</tr>
<tr>
<td>CSD</td>
<td>complementary subspace detector</td>
</tr>
<tr>
<td>CTIS</td>
<td>chromotomographic imaging spectrometer</td>
</tr>
<tr>
<td>DDR-SDRAM</td>
<td>double-data-rate synchronous dynamic random access memory</td>
</tr>
<tr>
<td>DFT</td>
<td>discrete Fourier transform</td>
</tr>
<tr>
<td>DHR</td>
<td>directional hemispherical reflectance</td>
</tr>
<tr>
<td>DIRSIG</td>
<td>Digital Image and Remote Sensing Image Generation</td>
</tr>
<tr>
<td>DISORT</td>
<td>multiple-scattering discrete-ordinate radiative transfer program for a multilayered plane-parallel medium</td>
</tr>
<tr>
<td>DN</td>
<td>data number</td>
</tr>
<tr>
<td>DOP</td>
<td>degree of polarization</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>ED</td>
<td>Euclidian distance (detector)</td>
</tr>
<tr>
<td>ELM</td>
<td>empirical line method</td>
</tr>
<tr>
<td>EM</td>
<td>expectation maximization (algorithm)</td>
</tr>
<tr>
<td>EO/IR</td>
<td>electro-optical and infrared</td>
</tr>
<tr>
<td>FAM</td>
<td>false-alarm mitigation</td>
</tr>
<tr>
<td>FAR</td>
<td>false-alarm rate</td>
</tr>
<tr>
<td>FCBAD</td>
<td>fuzzy cluster-based anomaly detector</td>
</tr>
<tr>
<td>FFT</td>
<td>fast Fourier transform</td>
</tr>
<tr>
<td>FIRST</td>
<td>Field Portable Imaging Radiometric Spectrometer Technology (spectrometer)</td>
</tr>
<tr>
<td>FLAASH</td>
<td>fast line-of-sight atmospheric analysis of spectral hypercubes</td>
</tr>
<tr>
<td>FOV</td>
<td>field of view</td>
</tr>
<tr>
<td>FPA</td>
<td>focal plane array</td>
</tr>
<tr>
<td>fps</td>
<td>frames per second</td>
</tr>
<tr>
<td>FTHSI</td>
<td>Fourier Transform Hyperspectral Imager</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared (spectrometer)</td>
</tr>
<tr>
<td>FTMF</td>
<td>finite target matched filter</td>
</tr>
<tr>
<td>FTS</td>
<td>Fourier transform spectrometer</td>
</tr>
<tr>
<td>FWHM</td>
<td>full-width at half-maximum</td>
</tr>
<tr>
<td>GIFTS</td>
<td>Geosynchronous Imaging Fourier Transform Spectrometer</td>
</tr>
<tr>
<td>GIQE</td>
<td>general image-quality equation</td>
</tr>
<tr>
<td>GLRT</td>
<td>generalized likelihood ratio test</td>
</tr>
<tr>
<td>GMM</td>
<td>Gaussian mixture model</td>
</tr>
<tr>
<td>GMRX</td>
<td>Gaussian mixture Reed–Xiaoli (detector)</td>
</tr>
<tr>
<td>GRD</td>
<td>ground-resolved distance</td>
</tr>
<tr>
<td>GSD</td>
<td>ground-sample distance</td>
</tr>
<tr>
<td>HDR</td>
<td>hemispherical directional reflectance</td>
</tr>
<tr>
<td>HICO™</td>
<td>Hyperspectral Imager for the Coastal Ocean</td>
</tr>
<tr>
<td>HITRAN</td>
<td>high-resolution transmission molecular absorption</td>
</tr>
<tr>
<td>HYDICE</td>
<td>Hyperspectral Digital Imagery Collection Experiment</td>
</tr>
<tr>
<td>ICA</td>
<td>independent component analysis</td>
</tr>
<tr>
<td>IFOV</td>
<td>instantaneous field of view</td>
</tr>
<tr>
<td>IS</td>
<td>integrating sphere</td>
</tr>
<tr>
<td>ISAC</td>
<td>in-scene atmospheric compensation</td>
</tr>
<tr>
<td>ISMC</td>
<td>improved split-and-merge clustering</td>
</tr>
<tr>
<td>ISODATA</td>
<td>iterative self-organizing data analysis technique</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Lab</td>
</tr>
<tr>
<td>JSD</td>
<td>joint subspace detector</td>
</tr>
<tr>
<td>kNN</td>
<td>k nearest neighbor</td>
</tr>
<tr>
<td>KS</td>
<td>Kolmogorov–Smirnov (test)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>LARS</td>
<td>least-angle regression</td>
</tr>
<tr>
<td>LBG</td>
<td>Linde–Buzo–Gray (clustering)</td>
</tr>
<tr>
<td>LMM</td>
<td>linear mixing model</td>
</tr>
<tr>
<td>LOS</td>
<td>line of sight</td>
</tr>
<tr>
<td>LRT</td>
<td>likelihood ratio test</td>
</tr>
<tr>
<td>LVF</td>
<td>linear variable filter</td>
</tr>
<tr>
<td>LWIR</td>
<td>longwave infrared</td>
</tr>
<tr>
<td>MBCD</td>
<td>model-based change detector</td>
</tr>
<tr>
<td>MD</td>
<td>Mahalanobis distance</td>
</tr>
<tr>
<td>ML</td>
<td>maximum likelihood (algorithm)</td>
</tr>
<tr>
<td>MLE</td>
<td>maximum-likelihood estimate</td>
</tr>
<tr>
<td>MNF</td>
<td>maximum (or minimum) noise fraction</td>
</tr>
<tr>
<td>MODTRAN</td>
<td>moderate-resolution atmospheric transmission and radiance code</td>
</tr>
<tr>
<td>MSE</td>
<td>mean-squared error</td>
</tr>
<tr>
<td>MTF</td>
<td>modulation transfer function</td>
</tr>
<tr>
<td>MTMF</td>
<td>mixture-tuned matched filter</td>
</tr>
<tr>
<td>MWIR</td>
<td>midwave infrared</td>
</tr>
<tr>
<td>NA</td>
<td>numerical aperture</td>
</tr>
<tr>
<td>NAPC</td>
<td>noise-adjusted principal component</td>
</tr>
<tr>
<td>NCM</td>
<td>normal compositional model</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Differential Vegetation Index</td>
</tr>
<tr>
<td>NEI</td>
<td>noise-equivalent irradiance</td>
</tr>
<tr>
<td>NEL</td>
<td>noise-equivalent radiance</td>
</tr>
<tr>
<td>NEP</td>
<td>noise-equivalent power</td>
</tr>
<tr>
<td>NESR</td>
<td>noise-equivalent spectral radiance</td>
</tr>
<tr>
<td>NIIRS</td>
<td>Normalized Image Interpretability Rating Scale</td>
</tr>
<tr>
<td>NIR</td>
<td>near infrared</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NVIS</td>
<td>night vision imaging spectrometer</td>
</tr>
<tr>
<td>OPD</td>
<td>optical path difference</td>
</tr>
<tr>
<td>OPRA</td>
<td>oblique projection retrieval of the atmosphere</td>
</tr>
<tr>
<td>OSP</td>
<td>orthogonal subspace projection</td>
</tr>
<tr>
<td>PALM</td>
<td>pair-wise adaptive linear matched (filter)</td>
</tr>
<tr>
<td>PC</td>
<td>principal component</td>
</tr>
<tr>
<td>PCA</td>
<td>principal-component analysis</td>
</tr>
<tr>
<td>PPI™</td>
<td>Pixel Purity Index™</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PSF</td>
<td>point spread function</td>
</tr>
<tr>
<td>QSF</td>
<td>quadratic spectral filter</td>
</tr>
<tr>
<td>QTH</td>
<td>quartz tungsten</td>
</tr>
</tbody>
</table>
List of Acronyms

QUAC quick atmospheric compensation
RMS root mean square
ROC receiver operating characteristic
ROIC readout integrated circuit
RX Reed–Xiaoli (detector)
SAM spectral angle mapper
SCR signal-to-clutter ratio
SEBASS Spectrally Enhanced Broadband Array Spectrograph System
SEM stochastic expectation maximization
SMF spectral matched filter
SMIFTS Spatially Modulated Imaging Fourier Transform Spectrometer
SMM stochastic mixing model
SNR signal-to-noise ratio
SRF spectral response function
SS subspace (detector)
SS-ACE subspace adaptive coherence/cosine estimator
SSD subpixel subspace detector
SSRX subspace Reed–Xiaoli (detector)
SVD singular-value decomposition
SVM support vector machine
SWIR shortwave infrared
SWIR1 short-wavelength end of the SWIR spectral region
SWIR2 long-wavelength end of the SWIR spectral region
TMA three-mirror anastigmatic (design)
USGS United States Geological Survey
VIS visible
VNIR visible and near-infrared
ZPD zero path difference