Bibliography

Pixel designs and High Dynamic Range pixels

Software High Dynamic Range methods, tone-mapping algorithms, and perception

Measurement and characterization methods

General HDR

General image sensors

Photography and optics

Miscellaneous

82. L. Straniero, see http://www.flickr.com/photos/24630856@N08 (last accessed July 2012).
84. C. Lofqvist, see page http://www.flickr.com/photos/43052603@N00 (last accessed July 2012).
Index

A
absolute radiance map, 79
airbag, 1
artifact, 21, 40, 48, 88, 90, 93

B
barcode, 6
Bayer pattern, 74
beam splitters, 66, 67

C
cartoon-like artifact, 88, 90
color channels, 74, 75
color correction matrix, 105
color space, 37, 74, 103, 104, 106
computer graphics, 77
correlated double sampling (CDS),
22, 53, 59, 62
current-gain-amplifier, 66

dynamic well adjustment, 51

E
EMVA1288 standard, 19, 26, 29, 75,
80, 109–112
Enz–Krummenacher–Vittoz (EKV)
equation, 60
exposure value (EV), 57, 81

F
fixed pattern noise (FPN), 21, 59
flare, 69, 93, 94
flicker noise, 23
flickering, 40, 100
full well capacity, 42, 62

G
gamma, 21, 88, 106, 107
gamut, 87, 103, 104, 106
ghosting, 87, 93
ghosts, 87
glare, 11
global operators, 88
global shutter, 25, 41, 44, 62, 66

H
halo, 88, 90
histogram, 24, 50, 88, 100
human vision system (HVS), 36, 37,
88

I
image information, 35
image lag, 19, 25, 61, 62, 66
independent areas of integration
(IAOI), 68
integration time, 44, 48, 49, 52, 69
International Organization for Standardization (ISO), 11, 28, 109, 112
irradiance, 13, 15, 25, 28, 29, 35, 79, 104
ISO speed, 99, 110

J
Johnson noise, 22

K
kneepoint, 32, 50, 53, 101, 102
kTC noise, 22

L
lane departure, 1, 5
lane departure warning (LDW), 88
lateral overflow, 50, 51
law enforcement, 2, 4
LinLog™, 66
local operators, 88
locally adaptive, 67
logarithmic compression with feedback, 66
logarithmic pixel, 113

M
Malik, Jitendra, 80, 83, 85
Mann, Steve, 7
metamerism, 37, 75, 103
misalignments, 87
multiple independent exposure window (MIEW), 68
multiple segments, 31, 49, 51, 52
multiple slopes, 31, 44
multiple-exposure window, 68

N
neutral density filters, 78

O
1/f noise, 21, 23
optical effects, 21

P
park assist, 1
pedestrian detection, 1, 5
photoconversion layers, 66
photocurrent, 42, 44, 48, 50, 51, 60, 61
photography, 6, 7, 57, 78, 88, 93
photon flux, 42, 49
photon shot noise, 21, 24, 27, 28, 87
photovoltaic, 62
Picard, Rosalind, 7
piecewise linear response, 31, 44, 57
piecewise linear-response, 52
pixel array, 19, 20
pixel clamping, 50
pixel control, 39
pixel design, 10, 19, 39, 70
pixel radiance, 79
pixel response nonuniformity (PRNU), 19–21, 25
Poisson distribution, 13
Poisson’s law, 14, 15
power supply rejection ratio (PSRR), 21, 23
proportional-integral-derivative (PID), 99

Q
quantization noise, 20, 21, 23, 24
quantum efficiency, 17, 18, 111

R
radiance, 79
radiance map, 7, 77, 79, 81
radiance maps, 105, 107
radiance measurement, 79, 82
readout circuits, 20
reciprocity principle, 79, 80
regulators, 99, 100, 114
relative radiance map, 79, 106
reset noise, 22, 62
road sign detection, 5
rolling shutter, 25, 40, 60, 62

S
S-curve, 21, 39, 79
saturation, 5, 20, 26, 27, 34, 42, 49, 52, 64, 75
saturation capacity, 42
scene radiance, 79
security, 3
shot-noise-adapted quantization, 73
shutter, 39, 41, 60, 113
shutter time, 99
silver halide film, 28, 79
skimming, 51
SNR holes, 31
spatially uniform operators, 88
spatially varying operators, 88
storage element, 39, 44, 48

T
3T, 40, 41
thermal noise, 21, 25
tone mapping, 7, 8, 10, 77, 82, 87, 104
tone-mapping, 86, 88, 89
traffic monitoring, 2
traffic sign recognition, 1
tunnel, 2, 3, 69, 88

V
vantage point, 8, 78
veiling glare, 8, 10, 21, 33, 95, 110

W
Wäny, Martin, 40
welding, 1
well sizing, 51, 52, 69
well-sizing, 48
Arnaud Darmont, founder and CEO of Aphesa, holds a degree in Electronic Engineering from the University of Liège (BE, EU) oriented towards imaging science; he has worked for over ten years in the field of high dynamic range imaging, machine vision, camera design, and image sensor characterization. He is the author of several publications and patents in the field of high dynamic range imaging, automotive on-board imaging and image processing applications, and image sensor test and characterization. He represents Aphesa at SPIE and EMVA1288 and has been an SPIE instructor since 2009.

Aphesa is a young, privately owned company founded in 2008, specializing in image sensor consulting, high dynamic range imaging, as well as image sensor and camera characterization, design, and benchmarking. Aphesa is one of the technical contributors to the EMVA1288 (European Machine Vision Association) standard for characterization of machine vision sensors and cameras, and characterization data reporting.