Index

A
acceptor, 62
capacitor, 66
carbon fluoride gases, 44
central processing unit (CPU), 78, 285
central processing unit (CPU), 78
channeling effect, 278
chemical mechanical polishing
(CMP), 44, 55, 507
advantages, 515
applications, 516
copper, 537
endpoint detection, 538
hardware, 519
oxide, 534
tungsten, 535
chemical mechanical polishing
(CMP) process, 107
chemical vapor deposition (CVD), 42,
110, 159, 254, 371
aluminum, 457, 483
atmospheric pressure CVD
(APCVD), 374
copper, 502
dielectrics, 370
high-density plasma CVD
(HDP-CVD), 426
low-pressure CVD (LPCVD), 164,
254, 375
metal, 475
plasma etch CVD (PECVD), 242,
258
plasma-enhanced CVD (PECVD),
164, 254, 377
rapid thermal CVD (RTCVD), 173
chemisorption, 382
chip

B
bandgap, 59
Bardeen, John, 2
batch process
tools, 39
batch reactors, 112
beam line system, 285
beam stop, 294
Bell Laboratories, 2, 73
bird’s beak, 134, 552
Boltzmann distribution, 248
bonding pad, 49, 53
etching, 80
borophosphosilicate glass (BPSG), 87
Brattain, Walter, 2

C
capacitance, 66, 67, 299
packaging, 47
cleanroom, 12, 24, 28, 29, 32, 33, 35, 45, 212
cobalt, 464
color chart, 402
complementary metal-oxide semiconductor (CMOS), 85, 87, 89
inverter, 14, 17
process flow, 581, 582, 598, 616
conducting band, 61
contact printer, 194
contamination, 29, 33, 35, 195
control, 30
elemental, 304
particle, 31, 303
contamination control, 542
copper, 65, 462, 501
chemical vapor deposition (CVD), 502
deposition, 464
electrochemical plating (ECP), 500
interconnection, 574
metallization, 89, 497, 498
seed layer, 499
slurry, 527
copper metallization, 19
crystal, 97, 103
defects, 99
orientation, 105
crystal pulling, 104
Czochralski (CZ) method, 102, 103

damaging mechanism, 333
dangling bonds, 141
dc bias, 238, 250
defects, 114, 530
degowning, 35
deposition, 111, 188
 polysilicon, 39, 161
 rate, 467
 silicon nitride, 164
 silicon oxide, 43
 thin-film, 79
deposition rate, 405
de depth of focus (DOF), 213
design fault, 47
development process, 203
diborane, 39, 153
die
testing, 46, 47
yield, 25, 26, 53
dielectric
 low-κ, 576, 612
dies
test, 28
diffusion, 150, 151, 168, 268, 271, 282
 bay, 38
doping, 38
 process, 153
diode, 69, 70
dioxide
 silicon, 279
discrete device, 3
dishing effect, 16, 530
dissociation collision, 241
dopant, 168, 174, 285, 296
 concentration, 154, 155, 305
diffusion, 174
dopants, 61
 concentration, 63
 n-type, 62, 72
 p-type, 63
doping, 150
 drive-in, 153
dual damascene, 439, 497, 537, 574
 process, 19
dynamic dispense, 189
dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

dynamic random access memory (DRAM), 41, 66, 75, 345, 349, 479, 625, 627

E
E-chuck, 339
drive-bake removal (EBR), 190, 191
electric erasable programmable read-only memory (EEPROM), 76
electrochemical plating (ECP), 500
electrochemical plating deposition (EPD)
tools, 43
electromigration, 456
electron, 208, 238, 240
free, 238
electron cyclotron resonance (ECR), 264
electronic design automation (EDA), 16
electronic-grade silicon (EGS), 101, 103
ellipsometry, 40, 146, 399
epitaxial silicon deposition, 109
epitaxial silicon growth, 80, 110, 111
epitaxial silicon layer, 110
epitaxy
 low-temperature (LTE), 115
 selective, 116
epitaxy process, 114
epitaxy systems, 112
equipment area, 45
erasable programmable read-only memory (EPROM), 76
etch, 315
dielectric, 342
dry (plasma), 330, 340
main, 322
mechanisms, 333
metal, 329, 357
oxide, 344
polysilicon gate, 353
profile, 320
rate, 317
reactive ion (RIE), 320, 332
single-crystal silicon, 349, 351
 wet, 325, 340
etch bay, 40
etch pits, 97
etch process, 42
etching, 40
evaporation
electron beam, 486
excitation-relaxation, 240
exhaust system, 129
exposure control, 199
F
facility area, 45
Fairchild Semiconductor, 4
feature size, 6, 8, 11, 31, 53, 78, 89, 199, 201, 218
field effect transistor (FET), 72, 73
film
 thickness, 539
flip-chip technology, 49
floating zone (FZ) method, 102
foundry company, 16
four-point probe, 305, 474
free radicals, 241, 242, 257, 260, 333
Frenkel defect, 99
fumed silica, 524
furnace, 39, 126, 167, 282
 horizontal, 129
 vertical, 129
G
gap fill, 256, 380
gas delivery system, 128
gas system, 284
gases
 processing, 128
gate, 10, 72, 76
 capacitance, 445
germanium, 2
 bar, 4
 single-crystal, 3, 62, 73, 96
glass transition, 202
gowning, 33, 35
graphics processing unit (GPU), 78
gyrofrequency, 248
gyromotion, 247, 286
gyroradius, 248, 288
H
hard bake, 205
heating process, 80, 187
Horni, Jean, 4
hot electron effect, 297
Index

hydrofluoric acid (HF), 35, 37, 107, 325
hydrogen, 39, 114, 144

I
I-V curve, 70
implant bay, 42
implantation, 564
in-situ process, 173
insulator, 59
integrated circuit (IC)
 application-specific (ASIC), 79
 design, 16
 first, 3
 processing, 53
 technology, 1
Intel Corporation, 5
interconnection, 42, 67, 89, 570
copper, 574
early, 572
local, 570
interlayer dielectric (ILD) film, 347
intermetal dielectric (IMD), 88, 370
interstitial defect, 99
ion bombardment, 248, 249, 255, 257–259, 330, 331, 333
ion implantation, 42, 79, 82, 151, 206, 267, 270, 279, 291, 294, 299, 305
 advantages, 270
 applications, 271
ion implanter, 247
ionization, 238, 240

J
junction depth, 150, 174
junction spiking, 456

K
Kilby, Jack, 3
killer defect density, 27

L
laminar flow, 33
light sources, 199, 215
lightly doped drain (LDD), 297, 561
line resistance, 452
lithography
 electron-beam (e-beam), 231
 extreme ultraviolet (EUV), 80, 226
 nanoimprint (NIL), 228
 next-generation (NGL), 216
 x-ray, 229
loading effect, 16, 321
loading system, 128
local oxidation of silicon (LOCOS), 87, 89, 133, 552, 554
logic design, 14
low-pressure chemical vapor deposition (LPCVD), 38

M
magnetic field, 247, 288, 294, 489
mask, 16, 18, 23, 194, 196, 223, 227, 230
mass-transport-limited regime, 111, 389
material structure, 95
 amorphous, 95
 polycrystalline, 95
 single-crystal, 95
mean free path (MFP), 244, 330
memory, 75, 76
 chip, 75, 625
 flash, 77, 78, 636
metal-insulator-semiconductor (MIS), 96
metal-oxide semiconductor (MOS), 269
metal-oxide-semiconductor field effect transistor (MOSFET), 42, 72, 73, 81, 85, 120, 564
metallization, 345, 451
copper, 497, 498
metrology tools, 40, 42, 43
microprocessor, 78
microscope
 scanning electron (SEM), 40
Moore’s law, 5
Moore, Gordon, 5
Index

N
n-channel metal-oxide semiconductor (nMOS), 72, 296
n-type region, 69
nickel, 465
nitric acid (HNO₃), 37, 107
nitrogen, 39, 46, 114
Noyce, Robert, 4
nucleation step, 478

O
orientation
crystal, 97
overhangs, 378
oxidation, 129–131, 137
dry, 139, 140
high-pressure, 145
rapid thermal (RTO), 171
trends, 149
wet, 138, 142
oxide
blanket-field, 82, 88, 132, 551
gate, 134
growth rate, 137
oxygen, 39
ozonator, 422
ozone, 421
concentration, 422

P
p-channel metal-oxide semiconductor (pMOS), 72, 81, 296
p–n junction, 69
p-type region, 69
p-well implantation, 288
packaging, 46, 53
ceramic, 51
plastic, 51
yield, 25, 26
particle, 30
killer, 31
passivation, 413, 577, 614
patterning process, 8, 80, 179, 301
pellicle, 17
phase shift mask (PSM), 217
phosphine, 39
phosphorus silicate glass (PSG), 82
photo bay, 40
photolithography, 80, 82, 179, 199, 215
optical, 9, 89
process, 19, 31, 40, 184
photomask, 230
photoresist, 23, 181, 183
coating, 188
negative, 31
positive, 31
strip, 260, 358
photoresist etchback, 514
photoresist strip, 41
photoresist stripping, 80
physical vapor deposition (PVD), 43, 374, 483
aluminum–copper, 495
titanium, 493
titanium nitride, 494
physisorption, 383
planar technology, 4
planarization, 511
plasma, 237, 239, 248, 330
definition of, 237
high-density, 238, 262, 331, 340
inductively coupled (ICP), 263
potential, 250
radio frequency (rf), 238
plasma etch, 256
remote, 261
plasma-enhanced chemical vapor deposition (PECVD), 42
polishing head, 521
polishing pad, 519
polymer, 182
polysilicon, 65, 66, 82, 101, 296, 297, 320, 454, 603
postacceleration, 289
postexposure bake (PEB), 202
Pourbaix diagram, 526
preclean, 492
predeposition, 152
premetal dielectric (PMD), 370
Preston equation, 528
prism coupler, 401
process gases, 45
processing tools, 45
profilometer, 467
profit margin, 26, 30
projection exposure system, 195

Q
quartz sand, 96, 100

R
rapid thermal annealing (RTA), 168
rapid thermal annealing (RTA) systems, 42
rapid thermal processing (RTP), 80, 157, 167, 169, 174, 283
RC time delay, 67
reflectivity, 472
reflow, 159
refractive index, 146, 398
remote plasma CVD (RPCVD), 262
removal process, 40, 44, 79
removal rate, 528
resistance, 65, 70, 154
sheet, 155, 305, 472
resistivity, 60, 63
resistor, 64
resolution, 180, 199, 213, 215, 221
reticle, 18, 197, 201
rf power, 433

S
safety, 232, 308, 503
scanning electron microscope (SEM), 209, 467
Schottky defect, 99
selective epitaxial growth (SEG), 116
selectivity, 320, 322, 529
self-aligned contact (SAC), 345
SEMATECH, 5
semiconductor, 59
manufacturing, 12, 36, 80
materials, 59
processing, 12
sensitizer, 183
shadowing effect, 279
shallow trench isolation (STI), 41, 89, 349, 391, 554, 617
self-aligned (SA-STI), 557, 639
sheath potential, 249
Shockley, William, 2, 269
shrinkage, 407
sidewall spacer, 164, 391
silane, 39, 111, 383, 411, 435
silicide, 570
silicon, 24, 96, 137
crude, 101
dioxide, 96, 100, 125, 130, 132, 135, 140
epitaxial, 159
etch process, 41
metallurgical-grade (MGS), 100
nitride, 166
on isolator (SOI), 600
oxide, 255, 390
polycrystalline, 104
single-crystal, 3, 13, 62, 95, 97, 102, 103, 267, 327
substrate, 125, 300
silicon oxide, 55
silicon-oxide surface, 72
silicon-oxide surface, 72
single-crystal semiconductor materials, 61
structure, 61
single-crystal structure, 281
single-wafer implantation, 293
slurry, 107, 522, 524
aluminum, 527
copper, 527
metal polishing, 525
oxide, 523
soft bake, 193
solvent, 183
spectroreflectometry, 404
spin, 204
disk, 293
spin-on glass (SOG), 396, 424

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 18 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
sputtering, 418, 487
 reactive, 460
sputtering etch process, 43
standing wave effect, 201
static dispense, 189
static random access memory
 (SRAM), 75
step coverage, 377
step-and-repeat, 18
step-and-repeat system, 196
stepper, 197
sticking coefficient, 386
stopping mechanisms, 272
electronic stopping, 272
nuclear stopping, 272
stress, 408, 470
surface mobility, 374, 379
surface-reaction-limited regime, 111,
 388
system ground potential, 288

T
tantalum, 464
test, 52
tetraethyl-orthosilicate (TEOS), 43,
 384, 386
 plasma-enhanced (PE-TEOS), 434
tetraethylorthosilicate (TEOS), 347
tetramethyl ammonium hydroxide,
 203
Texas Instruments, 3
thermal
evaporation, 485
thermal budget, 151, 281
thermal expansion, 409
thermal processing, 125
thermal stress, 53
thermal velocity, 245
thermal wave, 306
thickness, 402
thin films
 metal, 465
thin-film bay, 42
threshold adjustment, 563
titanium, 458, 481
 nitride, 459, 481
 silicide, 454, 458
 track system, 211
 transistor
 bipolar, 70, 71, 81
 first, 2, 70
 level design, 14
 npn, 71
 point-contact bipolar, 96
transition region, 69
trench fill, 132
trichlorosilane (TCS), 101
troubleshooting, 437
tungsten, 461, 477, 479
 silicide, 480
 slurry, 526
ultraviolet (UV) light, 40, 76, 232
uniformity, 407, 469, 529
vacancy, 99
valence shell, 59
void formation, 441
wafer, 97, 114, 193, 204
 charging, 302
 cleaning, 185
 finishing, 108
 handler, 292
 manufacturing, 13
 preparation, 550
 processing, 36, 47, 107
 silicon-on-insulator (SOI), 116,
 118, 272
 size, 9
 surface, 40
 temperature, 294, 339
 yield, 25, 26
wafer preparation, 88
wafer processing, 19, 28
wafer-to-wafer (WTW)
 nonuniformity, 156

U

V

W
wafer-to-wafer (WTW) uniformity, 112, 318
well formation, 88, 557
 self-aligned twin well, 88
 single well, 88
wet bay, 37
wet clean processing, 136
wet etch, 536
 process, 107
rate, 406
wet processes, 37
wire bonding, 49, 50
X
xylene, 232
Y
yield, 25–28, 30
Dr. Hong Xiao is a principal engineer of KLA-Tencor Corp. Previously, he was a technical marketing specialist at Hermes-Microvision, Inc. and a technical manager at Hermes Epitek. Other past positions include a working as a consultant of semiconductor process technology, a senior process engineer at Motorola Semiconductor Production Sector, and an associate professor at Austin Community College. After receiving his Ph.D., Dr. Xiao worked at Applied Materials as a senior technical instructor with expertise in dielectric thin-film deposition, semiconductor process integration, and plasma physics.

Dr. Xiao has authored and co-authored over 30 journal and conference papers. He is the author of *Introduction to Semiconductor Manufacturing Technology*, published by Prentice Hall in 2000. He has six US patents and more than ten patents in the application process. He has been a member of SPIE since 2005.