OPTICAL IMAGING
AND ABERRATIONS

PART III

WAVEFRONT ANALYSIS
OPTICAL IMAGING AND ABERRATIONS

PART III

WAVEFRONT ANALYSIS

VIRENDRA N. MAHAJAN

THE AEROSPACE CORPORATION

AND

COLLEGE OF OPTICAL SCIENCES - THE UNIVERSITY OF ARIZONA

SPIE PRESS

Bellingham, Washington USA
To my grandchildren

Maya, Leela, Rohan, and Krishan
For years Vini Mahajan has been publishing a book series on optical imaging and aberrations. Part I of the series on *Ray Geometrical Optics* was published in 1998, and Part II on *Wave Diffraction Optics* followed in 2001. A second edition of Part II appeared in 2011. Now Vini has written Part III on *Wavefront Analysis*, which should be of interest to anyone working in the fields of optical design, fabrication, or testing.

Wavefront Analysis is focused on the use of orthonormal polynomials for wavefront analysis of optical imaging systems with pupils of different shapes. The book starts with an excellent introduction to optical imaging and aberrations. These first two chapters should be of interest to anyone working in optics. Chapter 3 describes orthonormal polynomials and the Gram–Schmidt orthonormalization process for obtaining orthonormal polynomials over one domain from those that are orthonormal over another.

Chapter 4 is a long and complete chapter on imaging and aberrations for optical systems with circular pupils. The chapter covers the PSF and OTF for aberration-free imaging, Strehl ratio and aberration balancing and tolerancing, and a very complete description of Zernike circle polynomials. Isometric, interferometric, and imaging characteristics of the circle polynomial aberrations are very nicely explained and illustrated. The important relationship between the circle polynomials and the classical aberrations is discussed. Since optical systems generally have circular pupils, this chapter will be of use to almost anyone working in optics.

The next several chapters are intended for readers interested in optical systems with noncircular or apodized circular or annular pupils. Much of this material is difficult to find in such detail elsewhere. The chapters start with a brief discussion of aberration-free imaging that includes both the PSF and the OTF of the optical system, as this is potentially the ultimate goal of any optical design or test. Then the polynomials appropriate for systems with pupils of different shapes representing balanced classical aberrations are described in detail. As in the case of the circle polynomial aberrations, the isometric, interferometric, and PSF plots of the first forty-five polynomial aberrations for systems with hexagonal, elliptical, annular, rectangular, and square pupils facilitate understanding of their significance. Systems with circular and annular pupils with Gaussian illumination, anamorphic systems with square and circular pupils, and those with circular and annular sector pupils are also discussed thoroughly.

Anyone thinking of using the Zernike circle polynomials for wavefront analysis of systems with noncircular pupils should read Chapter 12, where their pitfalls are illustrated by applying them to systems with annular and hexagonal pupils. Numerical examples on the calculation of the orthonormal aberration coefficients from the wavefront or the wavefront slope data given in Chapter 14 add to the utility and
practicality of the book. A summary at the end of each chapter is quite useful, as it describes the essence of the content.

Vini is an excellent writer with the gift of writing complex topics in a simplified, yet rigorous, manner. As in the first two volumes of this book series, the material presented in Part III is thorough and detailed, and much of it is from his own publications. *Wavefront Analysis* is primarily analytical in nature, but it is generally easy to read with a lot of examples and numerical results. Both students and experienced optical engineers and scientists who have a need for wavefront analysis of optical systems will find it to be extremely useful.

Tucson, Arizona

June 2013

James C. Wyant
CHAPTER 4: SYSTEMS WITH CIRCULAR PUPILS .. 47

4.1 Introduction .. 49

4.2 Pupil Function .. 49

4.3 Aberration-Free Imaging .. 50
 4.3.1 PSF ... 51
 4.3.2 OTF ... 53

4.4 Strehl Ratio and Aberration Tolerance .. 54
 4.4.1 Strehl Ratio .. 54
 4.4.2 Defocus Strehl Ratio ... 55
 4.4.3 Approximate Expressions for Strehl Ratio ... 56

4.5 Balanced Aberrations ... 57

4.6 Description of Zernike Circle Polynomials ... 63
 4.6.1 Analytical Form ... 63
 4.6.2 Circle Polynomials in Polar Coordinates ... 65
 4.6.3 Polynomial Ordering ... 65
 4.6.4 Number of Circle Polynomials through a Certain Order n 65
 4.6.5 Relationships among the Indices n, m, and j ... 69
 4.6.6 Uniqueness of Circle Polynomials .. 69
 4.6.7 Circle Polynomials in Cartesian Coordinates .. 70

4.7 Zernike Circle Coefficients of a Circular Aberration Function 70

4.8 Symmetry Properties of Images Aberrated by a Circle Polynomial Aberration 74
 4.8.1 Symmetry of PSF ... 74
 4.8.2 Symmetry of OTF ... 75

4.9 Isometric, Interferometric, and Imaging Characteristics of Circle Polynomial Aberrations ... 78
 4.9.1 Isometric Characteristics .. 78
 4.9.2 Interferometric Characteristics .. 78
 4.9.3 PSF Characteristics ... 83
 4.9.4 OTF Characteristics ... 84

4.10 Circle Polynomials and Their Relationships with Classical Aberrations 88
 4.10.1 Introduction .. 88
 4.10.2 Wavefront Tilt and Defocus .. 88
 4.10.3 Astigmatism .. 89
 4.10.4 Coma .. 90
 4.10.5 Spherical Aberration ... 90
 4.10.6 Seidel Coefficients from Zernike Coefficients .. 91
 4.10.7 Strehl Ratio for Seidel Aberrations with and without Balancing 92
CHAPTER 5: SYSTEMS WITH ANNULAR PUPILS 105
5.1 Introduction .. 107
5.2 Aberration-Free Imaging .. 107
 5.2.1 PSF ... 107
 5.2.2 OTF .. 109
5.3 Strehl Ratio and Aberration Balancing... 111
5.4 Orthonormalization of Circle Polynomials over an Annulus.. 114
5.5 Annular Polynomials .. 116
5.6 Annular Coefficients of an Annular Aberration Function ... 123
5.7 Strehl Ratio for Annular Polynomial Aberrations .. 129
5.8 Isometric, Interferometric, and Imaging Characteristics of
 Annular Polynomial Aberrations ... 132
5.9 Summary ... 139
References .. 140

CHAPTER 6: SYSTEMS WITH GAUSSIAN PUPILS 141
6.1 Introduction .. 143
6.2 Gaussian Pupil .. 144
6.3 Aberration-Free Imaging .. 145
 6.3.1 PSF ... 145
 6.3.2 Optimum Gaussian Radius .. 146
 6.3.3 OTF .. 147
6.4 Strehl Ratio and Aberration Balancing... 149
6.5 Orthonormalization of Zernike Circle Polynomials over a Gaussian Circular Pupil . 153
6.6 Gaussian Circle Polynomials Representing Balanced Primary Aberrations for a
 Gaussian Circular Pupil... 155
6.7 Weakly Truncated Gaussian Pupils ... 156
6.8 Aberration Coefficients of a Gaussian Circular Aberration Function 157
6.9 Orthonormalization of Annular Polynomials over a Gaussian Annular Pupil 157
6.10 Gaussian Annular Polynomials Representing Balanced Primary Aberrations for a
 Gaussian Annular Pupil ... 159
6.11 Aberration Coefficients of a Gaussian Annular Aberration Function 161
6.12 Summary ... 161
References .. 163

CHAPTER 7: SYSTEMS WITH HEXAGONAL PUPILS .. 165
7.1 Introduction .. 167
7.2 Pupil Function .. 168
7.3 Aberration-Free Imaging .. 169
 7.3.1 PSF .. 169
 7.3.2 OTF ... 174
7.4 Hexagonal Polynomials .. 177
7.5 Hexagonal Coefficients of a Hexagonal Aberration Function .. 185
7.6 Isometric, Interferometric, and Imaging Characteristics of Hexagonal Polynomial Aberrations ... 187
7.7 Seidel Aberrations, Standard Deviation, and Strehl Ratio ... 194
 7.7.1 Defocus ... 194
 7.7.2 Astigmatism ... 194
 7.7.3 Coma .. 195
 7.7.4 Spherical Aberration ... 196
 7.7.5 Strehl Ratio ... 197
7.8 Summary ... 197
References .. 200

CHAPTER 8: SYSTEMS WITH ELLIPTICAL PUPILS 201
8.1 Introduction .. 203
8.2 Pupil Function .. 203
8.3 Aberration-Free Imaging .. 204
 8.3.1 PSF .. 204
 8.3.2 OTF ... 207
8.4 Elliptical Polynomials ... 209
8.5 Elliptical Coefficients of an Elliptical Aberration Function .. 210
8.6 Isometric, Interferometric, and Imaging Characteristics of Elliptical Polynomial Aberrations ... 214
8.7 Seidel Aberrations and Their Standard Deviations .. 228
 8.7.1 Defocus ... 228
 8.7.2 Astigmatism ... 228
 8.7.3 Coma .. 229
 8.7.4 Spherical Aberration ... 230
8.8 Summary ... 232
References .. 234
CHAPTER 9: SYSTEMS WITH RECTANGULAR PUPILS 235

9.1 Introduction ... 237
9.2 Pupil Function .. 237
9.3 Aberration-Free Imaging .. 238
 9.3.1 PSF ... 238
 9.3.2 OTF ... 240
9.4 Rectangular Polynomials .. 242
9.5 Rectangular Coefficients of a Rectangular Aberration Function .. 243
9.6 Isometric, Interferometric, and Imaging Characteristics of Rectangular Polynomial Aberrations .. 247
9.7 Seidel Aberrations and Their Standard Deviations .. 260
 9.7.1 Defocus ... 260
 9.7.2 Astigmatism .. 260
 9.7.3 Coma .. 261
 9.7.4 Spherical Aberration ... 261
9.8 Summary ... 264
References .. 265

CHAPTER 10: SYSTEMS WITH SQUARE PUPILS 267

10.1 Introduction .. 269
10.2 Pupil Function ... 269
10.3 Aberration-Free Imaging .. 270
 10.3.1 PSF ... 272
 10.3.2 OTF ... 274
10.4 Square Polynomials ... 281
10.5 Square Coefficients of a Square Aberration Function .. 282
10.6 Isometric, Interferometric, and Imaging Characteristics of Square Polynomial Aberrations .. 289
10.7 Seidel Aberrations and Their Standard Deviations .. 289
 10.7.1 Defocus ... 289
 10.7.2 Astigmatism .. 289
 10.7.3 Coma .. 290
 10.7.4 Spherical Aberration ... 292
10.8 Summary ... 293
References .. 294
CHAPTER 11: SYSTEMS WITH SLIT PUPILS ... 295

11.1 Introduction .. 297
11.2 Aberration-Free Imaging .. 297
 11.2.1 PSF .. 297
 11.2.2 Image of an Incoherent Slit.. 298
11.3 Strehl Ratio and Aberration Balancing.. 299
 11.3.1 Strehl Ratio .. 299
 11.3.2 Aberration Balancing... 289
11.4 Slit Polynomials .. 301
11.5 Standard Deviation of a Primary Aberration ... 302
11.6 Summary ... 305

References.. 306

CHAPTER 12: USE OF ZERNIKE CIRCLE POLYNOMIALS FOR NONCIRCULAR PUPILS ... 307

12.1 Introduction .. 309
12.2 Relationship Between the Orthonormal and the Corresponding
 Zernike Circle Coefficients.. 309
12.3 Use of Zernike Circle Polynomials for the Analysis of an Annular Wavefront 314
 12.3.1 Zernike Circle Coefficients in Terms of the Annular Coefficients 314
 12.3.2 Interferometer Setting Errors ... 320
 12.3.3 Wavefront Fitting ... 320
 12.3.4 Application to an Annular Seidel Aberration Function................................. 321
 12.3.4.1 Annular Coefficients .. 321
 12.3.4.2 Circle Coefficients.. 323
 12.3.4.3 Residual Aberration Function after Removing
 Interferometer Setting Errors... 323
 12.3.4.4 Error with Assuming Circle Polynomials to be
 Orthogonal over an Annulus .. 325
 12.3.4.5 Numerical Example... 326
12.4 Use of Zernike Circle Polynomials for the Analysis of a Hexagonal Wavefront 332
 12.4.1 Zernike Circle Coefficients in Terms of Hexagonal Coefficients.................. 332
 12.4.2 Interferometer Setting Errors.. 335
 12.4.3 Numerical Example... 336
12.5 Aberration Coefficients from Discrete Wavefront Data... 345
12.6 Summary ... 345

References.. 348
CHAPTER 13: ANAMORPHIC SYSTEMS .. 349
13.1 Introduction .. 351
13.2 Gaussian Imaging ... 352
13.3 Classical Aberrations ... 354
13.4 Strehl Ratio and Aberration Balancing for a Rectangular Pupil 355
13.5 Aberration Polynomials Orthonormal over a Rectangular Pupil 356
13.6 Expansion of a Rectangular Aberration Function in Terms of Orthonormal
Rectangular Polynomials ... 360
13.7 Anamorphic Imaging System with a Circular Pupil ... 361
 13.7.1 Balanced Aberrations .. 361
 13.7.2 Orthonormal Polynomials Representing Balanced Aberrations 362
13.8 Comparison of Polynomials for Rotationally Symmetric and
Anamorphic Imaging Systems .. 362
13.9 Summary 365
References .. 367

CHAPTER 14: NUMERICAL WAVEFRONT ANALYSIS 369
14.1 Introduction .. 371
14.2 Zernike Coefficients from Wavefront Data ... 372
 14.2.1 Theory .. 372
 14.2.2 Numerical Example ... 373
14.3 Zernike Coefficients from Wavefront Slope Data .. 383
 14.3.1 Theory .. 383
 14.3.2 Alternative Approach for Obtaining Zernike Coefficients from
Wavefront Slope Data .. 388
 14.3.3 Numerical Example ... 393
14.4 Summary ... 398
References .. 399

APPENDIX: SYSTEMS WITH SECTOR PUPILS ... 401

Index .. 415
PREFACE

This book is Part III of a series of books on Optical Imaging and Aberrations. Part I on *Ray Geometrical Optics* and Part II on *Wave Diffraction Optics* were published earlier. Part III is on *Wavefront Analysis*, which is an integral part of optical design, fabrication, and testing. In optical design, rays are traced to determine the wavefront and thereby the quality of a design. In optical testing, the fabrication errors and, therefore, the associated aberrations are measured by way of interferometry. In both cases, the quality of the wavefront is determined from the aberrations obtained at an array of points. The aberrations thus obtained are used to calculate the mean, the peak-to-valley, and the standard deviation values. While such statistical measures of the wavefront are part of wavefront analysis, the purpose of this book is to determine the content of the wavefront by decomposing the ray-traced or test-measured data in terms of polynomials that are orthogonal over the expected domain of the data. These polynomials must include the basic aberrations of wavefront defocus and tilt, and represent balanced classical aberrations.

We start Part III with an outline of optical imaging in the presence of aberrations in Chapter 1, i.e., on how to obtain the point-spread and optical transfer functions of an imaging system with an arbitrary shaped pupil. The Strehl ratio of a system as a measure of image quality is introduced in this chapter, and shown to be dependent only on the aberration variance when the aberration is small. It is followed in Chapter 2 with a brief discussion of the wavefronts and aberrations. This chapter introduces the nomenclature of aberrations. How to obtain the orthogonal polynomials over a certain domain from those over another is discussed in Chapter 3. For systems with a circular pupil, the Zernike circle polynomials are well known for wavefront analysis. They are discussed at length in Chapter 4. These polynomials are orthogonalized over an annular pupil in Chapter 5, and over a Gaussian pupil in Chapter 6. They are obtained similarly for systems with hexagonal, elliptical, rectangular, square, and slit pupils in the succeeding chapters. For each pupil, the polynomials are given in their orthonormal form so that an expansion coefficient (with the exception of piston) represents the standard deviation of the corresponding polynomial aberration term. The standard deviation of a Seidel aberration with and without aberration balancing is also discussed in these chapters.

Since the Zernike circle polynomials form a complete set, a wavefront over any domain can be expanded in terms of them. However, the pitfalls of their use over a domain other than circular and resulting from the lack of their orthogonality over the chosen domain are discussed in Chapter 12. Finally, the aberrations of anamorphic systems are discussed, and polynomials suitable for their aberration analysis are given in Chapter 13 for both rectangular and circular pupils. The use of the orthonormal polynomials for determining the content of a wavefront is demonstrated in Chapter 14 by computer simulations of circular wavefronts. The determination of the aberrations coefficients from the wavefront slope data, as in a Shack–Hartmann sensor, is also discussed in this chapter.

El Segundo, California

Virendra N. Mahajan

June 2013
ACKNOWLEDGMENTS

Once again, it is a great pleasure to acknowledge the generous support I have received over the years from my employer, The Aerospace Corporation, in preparing Part III on Wavefront Analysis in a series of books on Optical Imaging and Aberrations. My special thanks go to my former classmate, Dr. Bill Swantner, for his constant advice on and constructive critique of my work. I have benefitted greatly from his practical expertise in both optical design and testing. The Sanskrit verse on p. xxiii was provided by Professor Sally Sutherland of the University of California at Berkeley. Many thanks to Professor James W. Wyant for writing the Foreword for this book.

I am grateful to Professor José Antonio Díaz Navas for carrying out many computer calculations and preparing many of the figures. My thanks to Drs. Barry Johnson, James Harvey, and Daniel Topa for reading an early version of the manuscript and suggesting to include examples of wavefront analysis. I am grateful to Professor Eva Acosta for her help with writing Chapter 14 on Numerical Wavefront Analysis, as my response to their suggestion. Of course, any shortcomings or errors anywhere in the book are totally my responsibility.

As in the past, I cannot say enough about the constant support I have received from my wife Shashi over the many years it has taken me to complete this three-part series. I dedicate Part III to my grandchildren.

Finally, I would like to thank SPIE Press Editors Dara Burrows and Scott McNeill, and Manager Tim Lamkins for their quality support in bringing this book to publication. It has always been a pleasure to work with the SPIE staff, starting with the Publications Director, Eric Pepper.
SYMBOLS AND NOTATION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>aberration coefficient</td>
</tr>
<tr>
<td>A</td>
<td>amplitude</td>
</tr>
<tr>
<td>A_i</td>
<td>peak aberration coefficient</td>
</tr>
<tr>
<td>B_d</td>
<td>defocus coefficient</td>
</tr>
<tr>
<td>B_j</td>
<td>wave aberration polynomial</td>
</tr>
<tr>
<td>B_t</td>
<td>tilt coefficient</td>
</tr>
<tr>
<td>c</td>
<td>aspect ratio</td>
</tr>
<tr>
<td>E_j</td>
<td>elliptical polynomial</td>
</tr>
<tr>
<td>F</td>
<td>focal ratio</td>
</tr>
<tr>
<td>G_j</td>
<td>Gaussian or vector polynomial</td>
</tr>
<tr>
<td>H_j</td>
<td>hexagonal polynomial</td>
</tr>
<tr>
<td>I</td>
<td>irradiance</td>
</tr>
<tr>
<td>Im</td>
<td>imaginary part</td>
</tr>
<tr>
<td>j</td>
<td>polynomial number</td>
</tr>
<tr>
<td>J_n</td>
<td>Bessel function</td>
</tr>
<tr>
<td>L_j</td>
<td>Legendre polynomial</td>
</tr>
<tr>
<td>M</td>
<td>magnification</td>
</tr>
<tr>
<td>MTF</td>
<td>modulation transfer function</td>
</tr>
<tr>
<td>OTF</td>
<td>optical transfer function</td>
</tr>
<tr>
<td>P</td>
<td>object point</td>
</tr>
<tr>
<td>P'</td>
<td>Gaussian image point</td>
</tr>
<tr>
<td>P_{ex}</td>
<td>power in the exit pupil</td>
</tr>
<tr>
<td>P_i</td>
<td>image power</td>
</tr>
<tr>
<td>P_n</td>
<td>polynomial</td>
</tr>
<tr>
<td>$P(\cdot)$</td>
<td>pupil function</td>
</tr>
<tr>
<td>PSF</td>
<td>point-spread function</td>
</tr>
<tr>
<td>PTF</td>
<td>phase transfer function</td>
</tr>
<tr>
<td>r</td>
<td>radial coordinate</td>
</tr>
<tr>
<td>r_c</td>
<td>radius of circle</td>
</tr>
<tr>
<td>\bar{r}_i</td>
<td>image point position vector</td>
</tr>
<tr>
<td>\tilde{r}_p</td>
<td>pupil point position vector</td>
</tr>
<tr>
<td>R</td>
<td>radius of reference sphere</td>
</tr>
<tr>
<td>Re</td>
<td>real part</td>
</tr>
<tr>
<td>R_j</td>
<td>rectangular polynomial</td>
</tr>
<tr>
<td>$R_{nm}(\rho)$</td>
<td>Zernike radial polynomial</td>
</tr>
<tr>
<td>S</td>
<td>Strehl ratio</td>
</tr>
<tr>
<td>S_{ex}</td>
<td>area of exit pupil</td>
</tr>
<tr>
<td>x, y</td>
<td>Cartesian coordinates of a point</td>
</tr>
<tr>
<td>W</td>
<td>wave aberration</td>
</tr>
<tr>
<td>\bar{v}_i</td>
<td>image spatial frequency vector</td>
</tr>
<tr>
<td>v</td>
<td>normalized spatial frequency</td>
</tr>
<tr>
<td>τ</td>
<td>optical transfer function</td>
</tr>
<tr>
<td>$\rho = r/a$</td>
<td>normalized radial coordinate</td>
</tr>
<tr>
<td>θ</td>
<td>polar angle of a position vector</td>
</tr>
<tr>
<td>ϕ</td>
<td>polar angle of frequency vector</td>
</tr>
<tr>
<td>ϵ</td>
<td>obscuration or aspect ratio</td>
</tr>
<tr>
<td>$\delta(\cdot)$</td>
<td>Dirac delta function</td>
</tr>
<tr>
<td>δ_{ij}</td>
<td>Kronecker delta</td>
</tr>
<tr>
<td>Δ</td>
<td>longitudinal defocus</td>
</tr>
<tr>
<td>Φ</td>
<td>phase aberration</td>
</tr>
<tr>
<td>r, θ</td>
<td>polar coordinates of a point</td>
</tr>
<tr>
<td>λ</td>
<td>optical wavelength</td>
</tr>
<tr>
<td>ξ, η</td>
<td>spatial frequency coordinates</td>
</tr>
<tr>
<td>σ_w</td>
<td>standard deviation (wave)</td>
</tr>
<tr>
<td>σ_ϕ</td>
<td>standard deviation (phase)</td>
</tr>
</tbody>
</table>
Anantaratnaprabhavya yasya himam na saubhagyavilopi jatam.
Eko hi doso gunasannipate nimajjatindoh kiranesvivankah.

The snow does not diminish the beauty of the Himalayan mountains which are the source of countless gems. Indeed, one flaw is lost among a host of virtues, as the moon’s dark spot is lost among its rays.

Kalidāsa Kumarasambhava 1.3