Sensor and Data Fusion

A Tool for Information Assessment and Decision Making

SECOND EDITION

Lawrence A. Klein

SPIE PRESS
Bellingham, Washington USA
To Jonathan, Amy, Gregory,
Maya, Theo, Cassie, and Tessa
Contents

List of Figures ..xv

List of Tables ..xxi

Preface ..xxv

Chapter 1 Introduction ..1

Chapter 2 Multiple-Sensor System Applications, Benefits, and Design
Considerations ..9

2.1 Data Fusion Applications to Multiple-Sensor Systems10
2.2 Selection of Sensors ...12
2.3 Benefits of Multiple-Sensor Systems ...18
2.4 Influence of Wavelength on Atmospheric Attenuation21
2.5 Fog Characterization ..24
2.6 Effects of Operating Frequency on MMW
 Sensor Performance ..24
2.7 Absorption of MMW Energy in Rain and Fog25
2.8 Backscatter of MMW Energy from Rain ..28
2.9 Effects of Operating Wavelength on IR
 Sensor Performance ..30
2.10 Visibility Metrics ..32
 2.10.1 Visibility ..33
 2.10.2 Meteorological range ..33
2.11 Attenuation of IR Energy by Rain ...34
2.12 Extinction Coefficient Values (Typical) ...35
2.13 Summary of Attributes of Electromagnetic Sensors36
2.14 Atmospheric and Sensor-System Computer
 Simulation Models ..40
 2.14.1 LOWTRAN attenuation model ...40
 2.14.2 FASCODE and MODTRAN attenuation models42
 2.14.3 EOSAEL sensor performance model44
2.15 Summary ...48

References ...49
Chapter 3 Sensor and Data Fusion Architectures and Algorithms 53
 3.1 Definition of Data Fusion .. 53
 3.2 Level 1 Processing ... 57
 3.2.1 Detection, classification, and identification
 algorithms for data fusion .. 58
 3.2.1.1 Physical models .. 59
 3.2.1.2 Feature-based inference techniques 61
 3.2.1.3 Cognitive-based models 71
 3.2.2 State estimation and tracking algorithms for
 data fusion .. 74
 3.2.2.1 Measurement- or track-search driven search ... 75
 3.2.2.2 Correlation and association of data
 and tracks .. 75
 3.3 Level 2, 3, and 4 Processing .. 83
 3.3.1 Situation refinement ... 83
 3.3.2 Impact (threat) refinement 86
 3.3.2.1 Database management................................. 87
 3.3.2.2 Interrelation of data fusion levels in an
 operational setting 88
 3.3.3 Fusion process refinement 90
 3.4 Level 5 Fusion: Human–Computer Interface 90
 3.5 Duality of Data Fusion and Resource Management 94
 3.6 Data Fusion Processor Functions 97
 3.7 Definition of an Architecture ... 97
 3.8 Data Fusion Architectures ... 98
 3.8.1 Sensor-level fusion ... 99
 3.8.2 Central-level fusion ... 102
 3.8.3 Hybrid fusion ... 103
 3.8.4 Pixel-level fusion ... 106
 3.8.5 Feature-level fusion ... 108
 3.8.6 Decision-level fusion .. 108
 3.9 Sensor Footprint Registration and Size Considerations ... 109
 3.10 Summary .. 110
References ... 113

Chapter 4 Classical Inference... 119
 4.1 Estimating the Statistics of a Population 120
 4.2 Interpreting the Confidence Interval 121
 4.3 Confidence Interval for a Population Mean 122
 4.4 Significance Tests for Hypotheses 127
 4.5 The z-test for the Population Mean 127
 4.6 Tests with Fixed Significance Level 129
 4.7 The t-test for a Population Mean 132
 4.8 Caution in Use of Significance Tests 135
Chapter 5 Bayesian Inference .. 145
5.1 Bayes’ Rule.. 145
5.2 Bayes’ Rule in Terms of Odds Probability and Likelihood Ratio .. 148
5.3 Direct Application of Bayes’ Rule to Cancer Screening Test Example .. 150
5.4 The Monty Hall Problem (Let’s Make a Deal!).............. 152
5.4.1 Case-by-case analysis ... 152
5.4.2 Bayes solution.. 153
5.5 Comparison of Bayesian Inference with Classical Inference .. 155
5.6 Application of Bayesian Inference to Fusing Information from Multiple Sources 157
5.7 Combining Multiple Sensor Information Using the Odds Probability Form of Bayes’ Rule 158
5.8 Recursive Bayesian Updating ... 159
5.9 Posterior Calculation Using Multivalued Hypotheses and Recursive Updating 161
5.10 Enhancing Underground Mine Detection Using Two Sensors whose Data are Uncorrelated 164
5.11 Bayesian Inference Applied to Freeway Incident Detection .. 169
5.11.1 Problem development ... 169
5.11.2 Numerical example.. 173
5.12 Fusion of Images and Video Sequence Data with Particle Filters .. 174
5.12.1 Particle filter .. 175
5.12.2 Application to multiple-sensor, multiple-target imagery .. 176
5.13 Summary .. 178
References .. 180

Chapter 6 Dempster–Shafer Evidential Theory 183
6.1 Overview of the Process.. 183
6.2 Implementation of the Method.. 184
6.3 Support, Plausibility, and Uncertainty Interval 185
6.4 Dempster’s Rule for Combination of Multiple-Sensor Data .. 189
6.4.1 Dempster’s rule with empty set elements 192
6.4.2 Dempster’s rule with singleton propositions 193
7.5.1 Madaline ... 244
7.5.2 Feedforward network .. 245
7.6 Capacity of Nonlinear Classifiers 247
7.7 Generalization ... 250
7.7.1 Hamming distance firing rule 250
7.7.2 Training set size for valid generalization 251
7.8 Supervised and Unsupervised Learning 251
7.9 Supervised Learning Rules ... 252
7.9.1 μ-LMS steepest-descent algorithm 253
7.9.2 α-LMS error-correction algorithm 254
7.9.3 Comparison of the μ-LMS and α-LMS algorithms 255
7.9.4 Madaline I and II error correction rules 255
7.9.5 Perceptron rule .. 256
7.9.6 Backpropagation algorithm .. 258
7.9.6.1 Training process .. 258
7.9.6.2 Initial conditions 259
7.9.6.3 Normalization of input and output vectors 260
7.9.7 Madaline III steepest descent rule 262
7.9.8 Dead zone algorithms ... 262
7.10 Other Artificial Neural Networks and Data Fusion Techniques ... 263
7.11 Summary .. 265
References .. 270

Chapter 8 Voting Logic Fusion .. 273
8.1 Sensor Target Reports .. 275
8.2 Sensor Detection Space .. 276
8.2.1 Venn diagram representation of detection space 276
8.2.2 Confidence levels ... 276
8.2.3 Detection modes ... 278
8.3 System Detection Probability ... 279
8.3.1 Derivation of system detection and false-alarm probability for nonnested confidence levels 279
8.3.2 Relation of confidence levels to detection and false-alarm probabilities 281
8.3.3 Evaluation of conditional probability 282
8.3.4 Establishing false-alarm probability 283
8.3.5 Calculating system detection probability 284
8.3.6 Summary of detection probability computation model ... 284
8.4 Application Example without Singleton-Sensor Detection Modes .. 286
8.4.1 Satisfying the false-alarm probability requirement 286
8.4.2 Satisfying the detection probability requirement ... 287
8.4.3 Observations... 288
8.5 Hardware Implementation of Voting-Logic Sensor
Fusion .. 289
8.6 Application with singleton-sensor detection modes 290
8.7 Comparison of voting logic fusion with
Dempster–Shafer evidential theory 292
8.8 Summary.. 292
References... 294

Chapter 9 Fuzzy Logic and Fuzzy Neural Networks 295
9.1 Conditions under Which Fuzzy Logic Provides
an Appropriate Solution.. 295
9.2 Fuzzy Logic Application to an Automobile
Antilock-Braking System ... 297
9.3 Basic Elements of a Fuzzy System 297
9.3.1 Fuzzy sets.. 297
9.3.2 Membership functions .. 298
9.3.3 Effect of membership function widths on
control... 298
9.3.4 Production rules ... 299
9.4 Fuzzy Logic Processing ... 299
9.5 Fuzzy Centroid Calculation ... 301
9.6 Balancing an Inverted Pendulum with Fuzzy
Logic Control... 303
9.6.1 Conventional mathematical solution 303
9.6.2 Fuzzy logic solution.. 306
9.7 Fuzzy Logic Applied to Multi-target Tracking 309
9.7.1 Conventional Kalman-filter approach 309
9.7.2 Fuzzy Kalman-filter approach 311
9.8 Scene Classification Using Bayesian Classifiers and
Fuzzy Logic ... 317
9.9 Fusion of Fuzzy-Valued Information from
Multiple Sources .. 321
9.10 Fuzzy Neural Networks ... 322
9.11 Summary.. 323
References... 326

Chapter 10 Data Fusion Issues Associated with Multiple-Radar
Tracking Systems ... 329
10.1 Measurements and Tracks .. 329
10.2 Radar Trackers... 330
10.2.1 Tracker performance parameters 331
10.2.2 Radar tracker design issues................................. 333
10.3 Sensor Registration .. 335
 10.3.1 Sources of registration error ... 337
 10.3.2 Effects of registration errors ... 338
 10.3.3 Registration requirements ... 339
10.4 Coordinate Conversion .. 342
 10.4.1 Stereographic coordinates ... 343
 10.4.2 Conversion of radar measurements into system stereographic coordinates ... 344
10.5 General Principle of Estimation 347
10.6 Kalman Filtering.. 348
 10.6.1 Application to radar tracking ... 349
 10.6.2 State-transition model ... 350
 10.6.3 Measurement model ... 352
 10.6.3.1 Cartesian stereographic coordinates 353
 10.6.3.2 Spherical stereographic coordinates 355
 10.6.3.3 Object in straight-line motion 357
 10.6.4 The discrete-time Kalman filter algorithm 359
 10.6.5 Relation of measurement-to-track correlation decision to the Kalman gain 363
 10.6.6 Initialization and subsequent recursive operation of the filter 364
 10.6.7 α-β filter .. 369
 10.6.8 Kalman gain modification methods 369
 10.6.9 Noise covariance values and filter tuning 371
 10.6.10 Process noise model for tracking manned aircraft 371
 10.6.11 Constant velocity target kinematic model process noise ... 373
 10.6.12 Constant acceleration target kinematic model process noise ... 375
10.7 Extended Kalman Filter ... 377
10.8 Track Initiation in Clutter .. 380
 10.8.1 Sequential probability ratio test ... 381
 10.8.2 Track initiation recommendations ... 384
10.9 Interacting Multiple Models .. 385
 10.9.1 Applications .. 385
 10.9.2 IMM implementation ... 386
 10.9.3 Two-model IMM example ... 389
10.10 Impact of Fusion Process Location and Data Types on Multiple-Radar State-Estimation Architectures 390
 10.10.1 Centralized measurement processing 391
 10.10.2 Centralized track processing using single-radar tracking ... 393
 10.10.3 Distributed measurement processing 394
10.10.4 Distributed track processing using single-radar tracking ... 393
10.11 Summary .. 397
References .. 400

Chapter 11 Passive Data Association Techniques for Unambiguous Location of Targets .. 403
11.1 Data Fusion Options ... 403
11.2 Received-Signal Fusion ... 405
 11.2.1 Coherent processing technique .. 407
 11.2.2 System design issues ... 409
11.3 Angle-Data Fusion .. 412
 11.3.1 Solution space for emitter locations .. 412
 11.3.2 Zero–one integer programming algorithm development ... 415
 11.3.3 Relaxation algorithm development .. 421
11.4 Decentralized Fusion Architecture ... 423
 11.4.1 Local optimization of direction angle-track association ... 424
 11.4.2 Global optimization of direction angle-track association ... 424
 11.4.2.1 Closest approach distance metric ... 425
 11.4.2.2 Hinge-angle metric .. 426
11.5 Passive Computation of Range Using Tracks from a Single-Sensor Site .. 428
11.6 Summary ... 428
References .. 431

Chapter 12 Retrospective Comments ... 433
12.1 Maturity of Data Fusion .. 433
12.2 Fusion Algorithm Selection ... 434
12.3 Prerequisites for Using Level 1 Object-Refinement Algorithms .. 435

Appendix A Planck Radiation Law and Radiative Transfer ... 441
A.1 Planck Radiation Law .. 441
A.2 Radiative Transfer Theory .. 443
References .. 447

Appendix B Voting Fusion with Nested Confidence Levels .. 449

Appendix C The Fundamental Matrix of a Fixed Continuous-Time System .. 451
Index ... 455

List of Figures

Figure 2.1 Signature-generation phenomena in the electromagnetic spectrum .. 12
Figure 2.2 Bistatic radar geometry .. 14
Figure 2.3 Active and passive sensors operating in different regions of the electromagnetic spectrum produce target signatures generated by independent phenomena .. 15
Figure 2.4 Sensor resolution versus wavelength .. 16
Figure 2.5 Sensor fusion concept for ATR using multiple sensor data .. 18
Figure 2.6 Multiple-sensor versus single-sensor performance with suppressed target signatures .. 19
Figure 2.7 Target discrimination with MMW radar and radiometer data .. 20
Figure 2.8 Atmospheric attenuation spectrum from 0.3 μm to 3 cm .. 22
Figure 2.9 Absorption coefficient in rain and fog as a function of operating frequency and rain rate or water concentration .. 27
Figure 2.10 Rain backscatter coefficient as a function of frequency and rain rate .. 29
Figure 2.11 Rain backscatter coefficient reduction by circular polarization .. 31
Figure 2.12 Atmospheric transmittance of the atmosphere .. 31
Figure 2.13 Atmospheric transmittance in rain .. 35
Figure 2.14 Typical 94 GHz radar backscatter from test area in absence of obscurants .. 38
Figure 2.15 Visible, mid-IR, and 94-GHz sensor imagery obtained during dispersal of water fog .. 38
Figure 2.16 Visible, mid- and far-IR, and 94-GHz sensor imagery obtained during dispersal of graphite dust along road .. 39
Figure 3.1 Data fusion model showing processing levels 0 through 5 .. 55
Figure 3.2 Data fusion processing levels 1, 2, and 3 .. 56
Figure 3.3 Multilevel data fusion processing .. 56
Figure 3.4 Taxonomy of detection, classification, and identification algorithms .. 58
Figure 3.5 Physical model concept .. 61
Figure 3.6 Laser radar imagery showing shapes of man-made and natural objects .. 61
Figure 3.7 Classical inference concept .. 62
Figure 3.8 Parametric templating concept based on measured emitter signal characteristics .. 67
Figure 3.9 Parametric templating using measured multispectral radiance values .. 68
Figure 3.10 Cluster analysis concept .. 69
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.11</td>
<td>Knowledge-based expert system concept</td>
</tr>
<tr>
<td>3.12</td>
<td>Taxonomy of state estimation and tracking algorithms</td>
</tr>
<tr>
<td>3.13</td>
<td>Data association as aided by prediction gates</td>
</tr>
<tr>
<td>3.14</td>
<td>Single-level and two-level data and track association architectures</td>
</tr>
<tr>
<td>3.15</td>
<td>Track-splitting scenario</td>
</tr>
<tr>
<td>3.16</td>
<td>Situation refinement in terms of information fusion and knowledge-based systems</td>
</tr>
<tr>
<td>3.17</td>
<td>Evolution of data to information and knowledge</td>
</tr>
<tr>
<td>3.18</td>
<td>Military command and control system architecture showing fusion of information from multiple sources at multiple locations</td>
</tr>
<tr>
<td>3.19</td>
<td>Data fusion and resource management architectures and processes</td>
</tr>
<tr>
<td>3.20</td>
<td>Sensor-level fusion</td>
</tr>
<tr>
<td>3.21</td>
<td>Central-level fusion</td>
</tr>
<tr>
<td>3.22</td>
<td>Hybrid fusion</td>
</tr>
<tr>
<td>3.23</td>
<td>Distributed fusion architecture</td>
</tr>
<tr>
<td>3.24</td>
<td>Pixel-level fusion in a laser radar</td>
</tr>
<tr>
<td>3.25</td>
<td>Feature-level fusion in an artificial neural network classifier</td>
</tr>
<tr>
<td>4.1</td>
<td>Interpretation of the standard deviation of the sample mean for a normal distribution</td>
</tr>
<tr>
<td>4.2</td>
<td>Central area of normal distribution included in a confidence level C</td>
</tr>
<tr>
<td>4.3</td>
<td>Interpretation of confidence interval with repeated sampling</td>
</tr>
<tr>
<td>4.4</td>
<td>90- and 99-percent confidence intervals for specimen analysis example</td>
</tr>
<tr>
<td>4.5</td>
<td>90-, 95-, and 99-percent confidence intervals for roadway sensor spacing example</td>
</tr>
<tr>
<td>4.6</td>
<td>Interpretation of two-sided P-value for metal-sheet-thickness example when sample mean = 2.98 mm</td>
</tr>
<tr>
<td>4.7</td>
<td>Upper critical value z^* used in fixed significance level test</td>
</tr>
<tr>
<td>4.8</td>
<td>Upper and lower $\alpha/2$ areas that appear in two-sided significance test</td>
</tr>
<tr>
<td>4.9</td>
<td>Comparison of t distribution with four degrees of freedom with standardized normal distribution</td>
</tr>
<tr>
<td>4.10</td>
<td>Hypothesis rejection regions for single-sided power of a test example</td>
</tr>
<tr>
<td>4.11</td>
<td>Hypothesis rejection regions for double-sided power of a test example</td>
</tr>
<tr>
<td>5.1</td>
<td>Venn diagram illustrating intersection of events E and H</td>
</tr>
<tr>
<td>5.2</td>
<td>Cancer screening hypotheses and statistics</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>5.3</td>
<td>Bayesian fusion process</td>
</tr>
<tr>
<td>5.4</td>
<td>Influence diagram for two-sensor mine detection</td>
</tr>
<tr>
<td>5.5</td>
<td>Influence diagram for freeway event detection using data from three uncorrelated information sources</td>
</tr>
<tr>
<td>6.1</td>
<td>Dempster–Shafer data fusion process</td>
</tr>
<tr>
<td>6.2</td>
<td>Dempster–Shafer uncertainty interval for a proposition</td>
</tr>
<tr>
<td>6.3</td>
<td>IR camera data showing the extracted object shape (typical)</td>
</tr>
<tr>
<td>6.4</td>
<td>IR probability mass function for cross-sectional area of a mine</td>
</tr>
<tr>
<td>6.5</td>
<td>Metal detector raw data (typical)</td>
</tr>
<tr>
<td>6.6</td>
<td>Metal detector probability mass function for metallic area</td>
</tr>
<tr>
<td>6.7</td>
<td>Ground-penetrating radar probability mass function for burial depth</td>
</tr>
<tr>
<td>6.8</td>
<td>Ground-penetrating radar 2D data after background removal (typical)</td>
</tr>
<tr>
<td>6.9</td>
<td>Probability mass functions corresponding to ratio of area from metal detector to the area from ground-penetrating radar</td>
</tr>
<tr>
<td>6.10</td>
<td>Motorway section over which travel-time data were collected and analyzed</td>
</tr>
<tr>
<td>6.11</td>
<td>Separation of travel time into four hypotheses corresponding to traffic flow conditions</td>
</tr>
<tr>
<td>6.12</td>
<td>Confusion matrix formation</td>
</tr>
<tr>
<td>7.1</td>
<td>Adaptive linear combiner</td>
</tr>
<tr>
<td>7.2</td>
<td>Linearly and nonlinearly separable pattern pairs</td>
</tr>
<tr>
<td>7.3</td>
<td>Adaptive linear element (Adaline)</td>
</tr>
<tr>
<td>7.4</td>
<td>Probability of training pattern separation by an Adaline</td>
</tr>
<tr>
<td>7.5</td>
<td>Madaline constructed of two Adalines with an AND threshold logic output</td>
</tr>
<tr>
<td>7.6</td>
<td>Threshold functions used in artificial neural networks</td>
</tr>
<tr>
<td>7.7</td>
<td>Fixed-weight Adaline implementations of AND, OR, and MAJORITY threshold logic functions</td>
</tr>
<tr>
<td>7.8</td>
<td>A three-layer, fully connected feedforward neural network</td>
</tr>
<tr>
<td>7.9</td>
<td>Effect of number of hidden elements on feedforward neural network training time and output accuracy for a specific problem</td>
</tr>
<tr>
<td>7.10</td>
<td>Learning rules for artificial neural networks that incorporate adaptive linear elements</td>
</tr>
<tr>
<td>7.11</td>
<td>Rosenblatt’s perceptron</td>
</tr>
<tr>
<td>7.12</td>
<td>Adaptive threshold element of perceptron</td>
</tr>
<tr>
<td>8.1</td>
<td>Attributes of series and parallel sensor output combinations</td>
</tr>
<tr>
<td>8.2</td>
<td>Detection modes for a three-sensor system</td>
</tr>
<tr>
<td>8.3</td>
<td>Nonnested sensor confidence levels</td>
</tr>
</tbody>
</table>
Figure 8.4 Detection modes formed by combinations of allowed sensor outputs ... 280
Figure 8.5 Sensor-system detection probability computation model 285
Figure 8.6 Hardware implementation for three-sensor voting logic fusion with multiple-sensor detection modes ... 289
Figure 8.7 Hardware implementation for three-sensor voting logic fusion with single-sensor detection modes ... 291

Figure 9.1 Short, medium, and tall sets as depicted in conventional and fuzzy set theory ... 296
Figure 9.2 Impact of membership function width on overlap 298
Figure 9.3 Fuzzy logic computation process ... 299
Figure 9.4 Shape of consequent membership functions for correlation-minimum and correlation-product inferencing 300
Figure 9.5 Defuzzification methods and relative defuzzified values 301
Figure 9.6 Model for balancing an inverted pendulum 303
Figure 9.7 Triangle-shaped membership functions for the inverted pendulum example ... 307
Figure 9.8 Fuzzy logic inferencing and defuzzification process for balancing an inverted pendulum ... 308
Figure 9.9 Validity membership function ... 313
Figure 9.10 Size-difference and intensity-difference membership functions ... 313
Figure 9.11 Similarity membership functions .. 314
Figure 9.12 Innovation vector and the differential error antecedent membership functions ... 315
Figure 9.13 Correction vector consequent membership functions 316
Figure 9.14 Improving performance of the fuzzy tracker by applying gains to the crisp inputs and outputs ... 317
Figure 9.15 Scene classification process .. 317
Figure 9.16 Spatial relationships of region pairs 319
Figure 9.17 Perimeter-class membership functions 319
Figure 9.18 Distance-class membership functions 320
Figure 9.19 Orientation-class membership functions 320
Figure 9.20 Final classification for tree-covered island class 321
Figure 9.21 Yamakawa's fuzzy neuron .. 323
Figure 9.22 Nakamura's and Tokunaga's fuzzy neuron 323

Figure 10.1 Surveillance system block diagram 331
Figure 10.2 Elements of tracker design .. 338
Figure 10.3 Multiple-sensor data fusion for air defense 336
Figure 10.4 Registration errors in reporting aircraft position 339
Figure 10.5 Effect of registration errors on measurement data and correlation gates ... 339
Figure 10.6 East-north-up and Earth-centered, Earth-fixed coordinate
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7</td>
<td>Stereographic coordinates</td>
</tr>
<tr>
<td>10.8</td>
<td>Kalman-filter application to optimal estimation of the system state</td>
</tr>
<tr>
<td>10.9</td>
<td>3D radar range and azimuth measurement error geometry</td>
</tr>
<tr>
<td>10.11</td>
<td>Kalman-filter update process</td>
</tr>
<tr>
<td>10.12</td>
<td>SPRT decision criteria</td>
</tr>
<tr>
<td>10.13</td>
<td>Interacting multiple model algorithm</td>
</tr>
<tr>
<td>10.14</td>
<td>Two-model IMM operation sequence</td>
</tr>
<tr>
<td>10.15</td>
<td>Centralized measurement processing</td>
</tr>
<tr>
<td>10.16</td>
<td>Centralized track processing</td>
</tr>
<tr>
<td>10.17</td>
<td>Hybrid-centralized measurement processing</td>
</tr>
<tr>
<td>10.18</td>
<td>Distributed measurement processing</td>
</tr>
<tr>
<td>10.19</td>
<td>MRT Aegis cruiser distributed measurement processing architecture</td>
</tr>
<tr>
<td>11.1</td>
<td>Passive sensor data association and fusion techniques for estimating location of emitters</td>
</tr>
<tr>
<td>11.2</td>
<td>Coherent processing of passive signals</td>
</tr>
<tr>
<td>11.3</td>
<td>Cross-correlation processing of the received passive signals</td>
</tr>
<tr>
<td>11.4</td>
<td>Law of sines calculation of emitter location</td>
</tr>
<tr>
<td>11.5</td>
<td>Unacceptable emitter locations</td>
</tr>
<tr>
<td>11.6</td>
<td>Ambiguities in passive localization of three emitter sources with two receivers</td>
</tr>
<tr>
<td>11.7</td>
<td>Ambiguities in passive localization of N emitter sources with three receivers</td>
</tr>
<tr>
<td>11.8</td>
<td>Passive localization of 10 emitters using zero–one integer programming</td>
</tr>
<tr>
<td>11.9</td>
<td>All subsets of possible emitter positions before prefiltering and cost constraints are applied</td>
</tr>
<tr>
<td>11.10</td>
<td>Potential emitter positions that remain after prefiltering input to zero–one integer programming algorithm</td>
</tr>
<tr>
<td>11.11</td>
<td>Average scan-to-scan association error of auction algorithm over 15 scans</td>
</tr>
<tr>
<td>11.12</td>
<td>Varad hinge angle</td>
</tr>
<tr>
<td>A.1</td>
<td>Radiative transfer in an Earth-looking radiometer sensor</td>
</tr>
<tr>
<td>A.2</td>
<td>Definition of incidence angle θ</td>
</tr>
<tr>
<td>B.1</td>
<td>Nested sensor confidence levels</td>
</tr>
</tbody>
</table>
List of Tables

Table 2.1 Common sensor functions and their implementations in precision guided weapons applications ... 11
Table 2.2 Radar spectrum letter designations ... 13
Table 2.3 Extinction coefficient model for snow ... 23
Table 2.4 Influence of MMW frequency on sensor design parameters 25
Table 2.5 Approximate ranges of extinction coefficients of atmospheric obscurants ... 36
Table 2.6 Electromagnetic sensor performance for object discrimination and state estimation ... 37
Table 2.7 LOWTRAN 7 input-card information ... 41
Table 2.8 LOWTRAN aerosol profiles ... 42
Table 2.9 PcEOSAEL modules and their functions 45
Table 3.1 Object discrimination categories ... 57
Table 3.2 Feature categories and representative features used in developing physical models ... 60
Table 3.3 Keno payoff amounts as a function of number of correct choices... 70
Table 3.4 Comparison of statistical, syntactic, and neural pattern recognition (PR) approaches .. 72
Table 3.5 Distance measures .. 77
Table 3.6 Suggested data and track association techniques for different levels of tracking complexity .. 82
Table 3.7 Human–computer interaction issues in an information fusion context .. 82
Table 3.8 Data fusion and resource management dual processing levels 92
Table 3.9 Data fusion and resource management duality concepts 96
Table 3.10 Signature-generation phenomena ... 100
Table 3.11 Sensor, target, and background attributes that contribute to object signature characterization ... 101
Table 3.12 Comparative attributes of sensor-level and central-level fusion... 104
Table 3.13 Advantages and issues associated with a distributed fusion architecture .. 106
Table 4.1 Standard normal probabilities showing z* for various confidence levels .. 122
Table 4.2 Relation of upper p critical value and C to z* 130
Table 4.3 Values of t* for several confidence levels and degrees of freedom .. 134
Table 4.4 Comparison of z-test and t-test confidence intervals 135
Table 4.5 Type 1 and Type 2 errors in decision making 136
Table 4.6	Characteristics of classical inference.	142	
Table 5.1	Possible outcomes for location of “gifts” behind the three doors.	152	
Table 5.2	Comparison of classical and Bayesian inference	156	
Table 5.3	$P(E^k	H_i)$: Likelihood functions corresponding to evidence produced by k^{th} sensor with 3 output states in support of 4 hypotheses	162
Table 5.4	Road sensor likelihood functions for the three-hypothesis freeway incident detection problem	173	
Table 5.5	Cellular telephone call likelihood functions for the three-hypothesis freeway incident detection problem	173	
Table 5.6	Radio report likelihood functions for the three-hypothesis freeway incident detection problem	174	
Table 6.1	Interpretation of uncertainty intervals for proposition a_i.	187	
Table 6.2	Uncertainty interval calculation for propositions a_1, $\overline{a_1}$, $a_1 \cup a_2$, Θ	189	
Table 6.3	Subjective and evidential vocabulary	189	
Table 6.4	Application of Dempster’s rule	191	
Table 6.5	Application of Dempster’s rule with an empty set	192	
Table 6.6	Probability masses of nonempty set elements increased by K	193	
Table 6.7	Application of Dempster’s rule with singleton events	194	
Table 6.8	Redistribution of probability mass to nonempty set elements	194	
Table 6.9	Probability masses for travel-time hypotheses from ILDs vs. true values from all toll collection data over a 24-hour period	209	
Table 6.10	Probability masses for travel-time hypotheses from ETC vs. true values from all toll collection data over a 24-hour period	209	
Table 6.11	Application of Dempster’s rule for combining probability masses for travel time hypothesis h_2 from ILD and ETC data	210	
Table 6.12	Normalized probability masses for travel-time hypotheses	211	
Table 6.13	Probability masses resulting from conditioning coin toss evidence E_1 on alibi evidence E_2	213	
Table 6.14	Arguments and counter arguments for selection of Mary, Peter, or Paul as the assassin	216	
Table 6.15	Pointwise multiplication of plausibility probability function $P	_P_{m1}$ by itself	217
Table 6.16	Normalized pointwise multiplied plausibility probability function $P	_P_{m1}$	217
Table 6.17	Probability summary using evidence set E_1 only	219	
Table 6.18	Probability summary using evidence sets E_1 and E_2	219	
Table 6.19	Probability mass values produced by the fusion process	220	
Table 6.20	Application of ordinary Dempster’s rule to $B \oplus B_1$	224	
Table 6.21 Normalized ordinary Dempster’s rule result for $B \oplus B_1$ ($K^{-1} = 0.76$) .. 225
Table 6.22 Application of modified Dempster’s rule to $B \oplus B_1$... 225
Table 6.23 Normalized modified Dempster’s rule result for $B \oplus B_1$ ($K^{-1} = 0.412$) ... 226
Table 6.24 Application of ordinary Dempster’s rule to $B \oplus B_2$... 226
Table 6.25 Normalized ordinary Dempster’s rule result for $B \oplus B_2$ ($K^{-1} = 0.76$) .. 226
Table 6.26 Application of modified Dempster’s rule to $B \oplus B_2$... 226
Table 6.27 Normalized modified Dempster’s rule result for $B \oplus B_2$ ($K^{-1} = 0.145$) ... 227
Table 6.28 Application of ordinary Dempster’s rule to $B \oplus B_3$... 227
Table 6.29 Application of modified Dempster’s rule to $B \oplus B_3$... 227
Table 6.30 Normalized modified Dempster’s rule result for $B \oplus B_3$ ($K^{-1} = 0.0334$) ... 227
Table 6.31 Application of ordinary Dempster’s rule to $B \oplus B_4$... 228
Table 6.32 Normalized ordinary Dempster’s rule result for $B \oplus B_4$ ($K^{-1} = 0.52$) ... 228
Table 6.33 Application of modified Dempster’s rule to $B \oplus B_4$... 228
Table 6.34 Normalized modified Dempster’s rule result for $B \oplus B_4$ ($K^{-1} = 0.0187$) ... 228
Table 6.35 Values of ODS and MDS agreement functions for combinations of evidence from B, B_i. ... 229
Table 6.36 Orthogonal sum calculation for conflicting medical diagnosis example (step 1) ... 230
Table 6.37 Normalization of nonempty set matrix element for conflicting medical diagnosis example (step 2) ... 231
Table 6.38 Two information source, two hypothesis application of plausible and paradoxical theory ... 232
Table 6.39 Resolution of medical diagnosis example through plausible and paradoxical reasoning ... 233
Table 7.1 Comparison of artificial neural-network and von Neumann architectures. 239
Table 7.2 Truth table after training by 1-taught and 0-taught sets. ... 251
Table 7.3 Truth table after neuron generalization with a Hamming distance firing rule. 251
Table 7.4 Properties of other artificial neural networks ... 266
Table 8.1 Multiple sensor detection modes that incorporate confidence levels in a three-sensor system ... 278
Table 8.2 Distribution of detections and signal-to-noise ratios among sensor confidence levels. ... 286
Table 8.3 False-alarm probabilities at the confidence levels and detection modes of the three-sensor system. .. 287
Table 8.4 Detection probabilities for the confidence levels and detection modes of the three-sensor system. .. 288
Table 8.5 Detection modes that incorporate single-sensor outputs and multiple confidence levels in a three-sensor system. 290

Table 9.1 Production rules for balancing an inverted pendulum 306
Table 9.2 Outputs for the inverted pendulum example................................. 309
Table 9.3 Fuzzy associative memory rules for degree_of_similarity. .. 314
Table 9.4 Fuzzy associative memory rules for the fuzzy state correlator.... 316
Table 9.5 Spatial relationships for scene classification. 318

Table 10.1 Measures of quality for tracks.. 331
Table 10.2 Critical performance parameters affecting radar tracking. 332
Table 10.3 Potential solutions for correlation and maneuver detection..... 335
Table 10.4 Registration error sources ... 337
Table 10.5 Tracking performance impacts of registration errors. 340
Table 10.6 Registration bias error budget... 342
Table 10.7 Position and velocity components of Kalman gain vs. noise-to-maneuver ratio. ... 370
Table 10.8 Multisensor data fusion tracking architecture options. 392
Table 10.9 Operational characteristics of data fusion and track management options.. 396
Table 10.10 Sensor and data fusion architecture implementation examples. .. 397

Table 11.1 Fusion techniques for associating passively acquired data to locate and track multiple targets. .. 406
Table 11.2 Major issues influencing the design of the coherent receiver fusion architecture... 410
Table 11.3 Speedup of relaxation algorithm over a branch-and-bound algorithm (averaged over 20 runs). ... 422

Table 12.1 Information needed to apply classical inference, Bayesian inference, Dempster–Shafer evidential theory, artificial neural networks, voting logic, fuzzy logic, and Kalman filtering data fusion algorithms to target detection, classification, identification, and state estimation.. 437

Table A.1 Effect of quadratic correction term on emitted energy calculated from Planck radiation law ($T = 300$ K) 442
Table A.2 Downwelling atmospheric temperature T_D and atmospheric attenuation A for a zenith-looking radiometer...................... 446
Preface

Sensor and Data Fusion: A Tool for Information Assessment and Decision Making, Second Edition is the latest embodiment of a series of books I have published with SPIE beginning in 1993. The information in this edition has been substantially expanded and updated to incorporate additional sensor and data fusion methods and application examples.

The book serves as a companion text to courses taught by the author on multi-sensor, multi-target data fusion techniques for tracking and identification of objects. Material discussing the benefits of multi-sensor systems and data fusion originally developed for courses on advanced sensor design for defense applications was utilized in preparing the original edition. Those topics that deal with applications of multiple-sensor systems; target, background, and atmospheric signature-generation phenomena and modeling; and methods of combining multiple-sensor data in target identity and tracking data fusion architectures were expanded for this book. Most signature phenomena and data fusion techniques are explained with a minimum of mathematics or use relatively simple mathematical operations to convey the underlying principles. Understanding of concepts is aided by the nonmathematical explanations provided in each chapter.

Multi-sensor systems are frequently deployed to assist with civilian and defense applications such as weather forecasting, Earth resource monitoring, traffic and transportation management, battlefield assessment, and target classification and tracking. They can be especially effective in defense applications where volume constraints associated with smart-weapons design are of concern and where combining and assessing information from noncollocated or dissimilar sensors and other data sources is critical. Packaging volume restrictions associated with the construction of fire-and-forget missile systems often restrict sensor selection to those operating at infrared and millimeter-wave frequencies. In addition to having relatively short wavelengths and hence occupying small volumes, these sensors provide high resolution and complementary information as they respond to different signature-generation phenomena. The result is a large degree of immunity to inclement weather, clutter, and signature masking produced by countermeasures. Sensor and data fusion architectures enable the information from the sensors to be combined in an efficient and effective manner.

High interest continues in defense usage of data fusion to assist in the identification of missile threats and other strategic and tactical targets,
assessment of information, evaluation of potential responses to a threat, and allocation of resources. The signature-generation phenomena and fusion architectures and algorithms presented continue to be applicable to these areas and the growing number of nondefense applications.

The book chapters provide discussions of the benefits of infrared and millimeter-wave sensor operation including atmospheric effects; multiple-sensor system applications; and definitions and examples of sensor and data fusion architectures and algorithms. Data fusion algorithms discussed in detail include classical inference, which forms a foundation for the more general Bayesian inference and Dempster–Shafer evidential theory that follow; artificial neural networks; voting logic as derived from Boolean algebra expressions; fuzzy logic; and Kalman filtering. Descriptions are provided of multiple-radar tracking systems and architectures, and detection and tracking of objects using only passively acquired data. The book concludes with a summary of the information required to implement each of the data fusion methods discussed.

Although I have strived to keep the mathematics as simple as possible and to include derivations for many of the techniques, a background in electrical engineering, physics, or mathematics will assist in gaining a more complete understanding of several of the data fusion algorithms. Specifically, knowledge of statistics, probability, matrix algebra, and to a lesser extent, linear systems and radar detection theory are useful.

Several people have made valuable suggestions that were incorporated into this edition. Martin Dana, with whom I taught the multi-sensor, multi-target data fusion course, reviewed several of the newer sections and contributed heavily to Chapter 10 dealing with multiple-sensor radar tracking and architectures. His insightful suggestions have improved upon the text. Henry Heidary, in addition to his major contributions to Chapter 11, reviewed other sections of the original manuscript. Sam Blackman reviewed the original text and provided several references for new material that was subsequently incorporated. Pat Williams reviewed sections on tracking and provided data concerning tracking-algorithm execution times. Tim Lamkins, Scott McNeill, Eric Pepper, and the rest of the SPIE staff provided technical and editorial assistance that improved the quality of the text.

Lawrence A. Klein

August 2012