Interferometry for Precision Measurement
Tutorial Texts Series

- Ocean Sensing and Monitoring: Optics and Other Methods, Weilin Hou, Vol. TT98
- Interferometry for Precision Measurement, Peter Langenbeck, Vol. TT94
- Modeling the Imaging Chain of Digital Cameras, Robert D. Fiete, Vol. TT92
- Bioluminescence and Fluorescence for In Vivo Imaging, Lubov Brovko, Vol. TT91
- Polarization of Light with Applications in Optical Fibers, Arun Kumar, Ajoy Ghatak, Vol. TT90
- Optical Design of Microscopes, George Seward, Vol. TT88
- Nanotechnology: A Crash Course, Raúl J. Martín-Palma and Akhlesh Lakhtakia, Vol. TT86
- Direct Detection LADAR Systems, Richard Richmond, Stephen Cain, Vol. TT85
- Optical Design: Applying the Fundamentals, Max J. Riedl, Vol. TT84
- Fundamentals of Polarimetric Remote Sensing, John Schott, Vol. TT81
- The Design of Plastic Optical Systems, Michael P. Schaub, Vol. TT80
- Fundamentals of Photonics, Chandra Roychoudhuri, Vol. TT79
- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Bioluminescence for Food and Environmental Microbiological Safety, Lubov Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare, Sergio R. Restaino, Vol. TT73
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69
- Artificial Neural Networks: An Introduction, Kevin L. Pridy and Paul E. Keller, Vol. TT68
- Basics of Code Division Multiple Access (CDMA), Raghuviree Rao and Sohail Dianat, Vol. TT67
- Optical Imaging in Projection Microlithography, Alfred Kwok-Kit Wong, Vol. TT66
- Metrics for High-Quality Specular Surfaces, Lionel R. Baker, Vol. TT65
- Field Mathematics for Electromagnetics, Photonics, and Materials Science, Bernard Maxum, Vol. TT64
- High-Fidelity Medical Imaging Displays, Aldo Badano, Michael J. Flynn, and Jerzy Kanicki, Vol. TT63
- Diffractive Optics—Design, Fabrication, and Test, Donald C. O’Shea, Thomas J. Suleski, Alan D. Kathman, and Dennis W. Prather, Vol. TT62
- Thin-Film Design: Modulated Thickness and Other Stopband Design Methods, Bruce Perilloz, Vol. TT57
- Optische Grundlagen für Infrarotsysteme, Max J. Riedl, Vol. TT56
- An Engineering Introduction to Biotechnology, J. Patrick Fitch, Vol. TT55

(For a complete list of Tutorial Texts, see http://spie.org/tt.)
Interferometry for Precision Measurement

Peter Langenbeck

Tutorial Texts in Optical Engineering
Volume TT94

SPIE PRESS
Bellingham, Washington USA
Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover many diverse fields of science and engineering. The initial idea for the series was to make material presented in SPIE short courses available to those who could not attend and to provide a reference text for those who could. Thus, many of the texts in this series are generated by augmenting course notes with descriptive text that further illuminates the subject. In this way, the TT becomes an excellent stand-alone reference that finds a much wider audience than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material covered since 1989. They no longer necessarily stem from short courses; rather, they are often generated independently by experts in the field. They are popular because they provide a ready reference to those wishing to learn about emerging technologies or the latest information within their field. The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, fiber optics, and laser technologies.

Authors contributing to the TT series are instructed to provide introductory material so that those new to the field may use the book as a starting point to get a basic grasp of the material. It is hoped that some readers may develop sufficient interest to take a short course by the author or pursue further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs and textbooks in the way in which the material is presented. In keeping with the tutorial nature of the series, there is an emphasis on the use of graphical and illustrative material to better elucidate basic and advanced concepts. There is also heavy use of tabular reference data and numerous examples to further explain the concepts presented. The publishing time for the books is kept to a minimum so that the books will be as timely and up-to-date as possible. Furthermore, these introductory books are competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

James A. Harrington
Rutgers University
Contents

Preface xiii

1 Known Methods: An Assessment of the State of the Art—Newton and Fizeau 1
 1.1 Introduction 1
 1.2 Limited Use of Newton’s Method 8
 1.3 Other Methods of Interferometry 9
 1.3.1 Tolansky: one experimenter’s indispensable knowledge 15
 1.4 Desirable Features for Safe, Applicable, and Economic Interferometry 16
 1.4.1 Commercial coherent white light 16
 1.4.2 Light sources for increased distance from reference to sample 17
 1.5 The Often-Neglected Angle of Light Incident to the Work 19
 1.5.1 Selecting only one angle of incidence 20
 1.5.2 Instrumental consequences 23
 1.5.3 The multifunctionality of a prism’s hypotenuse: beamsplitter, reference, and obliqueness provider 24
 1.6 Knowing the Angle of Incidence with Respect to the Fringe Equivalent 26
 1.6.1 When the angle of total internal reflection is zero 26
 1.6.2 Calibration masters 27
 1.6.3 Are 5-μm fringes meaningful? 29
 1.6.4 Two-beam and multiple-beam walkoff 32
 1.6.5 Stray light need not be annoying 33
 1.6.6 The scatter flat test 35
References 36

2 From Extended Light Source to Collimated Illumination 39
 2.1 Introduction 39
 2.2 Technical Relevance of Oblique Incidence 42
 2.3 Fast Adjustment of Tilt and Height 45
 2.3.1 Autoleveling with mechanical truing 45
 2.3.2 Autoleveling with optical position sensing 47
 2.4 Variable-Angle u on Samples with Strong Slopes 47
 2.5 Interference Contrast 48
 2.5.1 Contrast of Fizeau fringes determined by reflectances 50
Contents

2.6 Notes on Recording Fringes

References 53

3 Interference Visualized by Vector Diagrams 55

3.1 Vectorial Representation of Dual- and Multiple-Beam Interference 55

3.2 The Airy Case: Zero Wedge Angle 57

3.3 The Fizeau Case 58

3.4 The Function of the Zeroth-Order Beam E_0 60

3.5 Advantages and Disadvantages of Using Multiple-Beam Interferometry 65

3.6 An Application: Evaluating the Task of Nulling 65

3.6.1 An artifact for nulling (autocollimation) and scanning 67

3.7 Other Forms of Pointing Interferometry with Respect to Nulling 70

3.8 Fizeau Interferometers with Large Cavities 71

3.9 Stringent Requirements for Collimation 72

3.10 Acceptable Uniformity of Illumination 74

References 75

4 Optical Laboratory Equipment 77

4.1 Experimenting with Collimation: Autocollimation 77

4.1.1 Autocollimation: The key to any interferometer 79

4.1.2 The autocollimator 80

4.2 Fizeau Interference and Autocollimation 80

4.2.1 Common applications of autocollimation 80

4.2.2 Orthogonality of two spindle axes 82

4.2.3 Price-worthy Fizeau instrumentation 84

4.2.3.1 Two typical applications of plano-convex collimating lenses 85

4.3 Testing the Collimation of an Expanded Laser Beam 86

4.3.1 Murty's parallel shearing plate 86

4.3.2 Variable shear: two parallel plates 89

4.3.3 Variable shear and tilt to suit 89

4.3.4 Double wedge plate shearing interferometer 90

4.3.5 Variable shear and tilt: enhanced sensitivity 91

4.3.6 A useful, robust interferometer 93

References 97

5 Straight Lines and Right Angles 99

5.1 Measuring 90-deg Roof Angles on Mirrors and Prisms 99

5.1.1 Reversion of wavefronts 101

5.1.2 Measuring small angles with straight fringes 103

5.1.3 Enhanced sensitivity for 90-deg-roof-angle quality assurance 104

5.1.4 Plus or minus angular error? High or low on surfaces? 106

5.1.5 Polarization 108
5.2 Function of the Trihedral Prism: the Corner Cube Prism (or CCR) 111
5.2.1 Retroreflectors in practice 115
 5.2.1.1 Illustrative micromachined retroreflectors 115
 5.2.1.2 Calibration of distance change: predominant application 115
 5.2.1.3 Using the CCR’s lateral displacement in linometry 115
 5.2.1.4 Comments on CCR displacement applications 117
 5.2.1.5 3D metrology with a CCR 120
 5.2.1.6 Model of an adjustable CCR for machine tool alignment 120
 5.2.1.7 Measuring tilt motion of one adjustable mirror 122
 5.2.1.8 CCR solid-block inverting shear interferometer (ISI) 123
 5.2.1.9 Application of a CCR in centration measurement 125
5.2.2 Quality assurance of the CCR 126
 5.2.2.1 Summary of sensitivity enhancement by double pass 130
 5.2.2.2 Fringe sharpening? 130
5.2.3 Improving collimation 131
 5.2.3.1 A useful “fringe” benefit 136
 5.2.3.2 CCR rotation 136
5.2.4 An alternative to the CCR: the ball reflector or “cat’s eye” 137
 5.2.4.1 Applications of the SSR 139
 5.2.4.2 Integrated-optic distance-measuring interferometer 139
5.2.5 Autocollimation test for equality of radii of curvature 140
 5.2.6 Separating angular errors from flatness errors on cubes and 90-deg prisms 141
 5.2.7 Measuring the parallelism of transparent laser rods 144
 5.2.8 90-deg angular calibration cubes 146
References 147

6 Polygons 149
6.1 Polygon Mirror Wheels 149
 6.1.1 Preparing and verifying axial surfaces of polygons 152
 6.1.2 Verifying facet flatness and angles 154
 6.1.3 Polygon rotation in 0.1-arcsec steps 157
 6.1.4 Polygon’s relative pyramidal error (static) 157
6.2 Angular Standards Calibrated by Interferometry 159
 6.2.1 0.1-arcsec resolution within ±15 deg 160
 6.2.2 Arcsecond rotation 161
References 161

7 Optical Shop Daily Tasks 163
7.1 Centration in the Optical Shop 163
 7.1.1 General-utility centering metrology 163
Contents

9.2 Instrumentation for Grazing Incidence Interferometry 220
 9.2.1 The prism interferometer 224
 9.2.2 The image in a prism interferometer 225
 9.2.3 Parameters influencing $\Delta P/IP$ reading accuracy 227

References 228

10 Enhancing Regular Interferometric Sensitivity 229
 10.1 Multiple Reflections 229
 10.2 Advantages and Disadvantages of Multipass Interferometers 234
 10.3 Relevance of Multiple-Reflection and Off-Axis Illumination 236
 10.4 Multipass Applications 236
 10.4.1 Multipass in comparator interferometry 236
 10.4.2 Angular metrology 237

Reference 239

Index 241
Preface

With new material added to the English translation of Chapter 7 of the German *Wirtschaftliche Mikrobearbeitung* (Carl Hanser Verlag, 2009), the author presents developments in physical, optical, and mechanical engineering over the past 60 years. The enduring impetus for this work is owed to the late, great gentleman engineer, Gordon J. Watt, with his assertion that optical wavefronts used in interferometers are complementary to the surfaces used to build air bearings. A foremost example of this statement is the fact that a plano-convex lens is confined by surfaces that are equivalent to those defining the Watt air-bearing spindle. The spindle rotor consists of a truncated hemisphere, rigidly connected to a flat disk.

Soon after the author founded Intop Entwicklungen (Baden-Württemberg, Germany) in 1972, he and G. J. Watt witnessed a sudden growth in spindle-enabling applications and new machines whose performance relied completely on low-axial-error motion (less than 5 nm) and an angular error motion of less than 0.1 arcsec. The bearing’s disk took on multiple integral functions: as a polygon wheel, as a polishing scaife for diamond tools, and as a chuck for thin substrates (memory substrates with memory scaling of 14.5). Interferometers for in-process quality control and final acceptance needed to be developed.

Increased interferometric sensitivity by multiple passes was adopted as a technique for measuring small departures from 90 deg, both for the metrology of corner cubes and for extremely sensitive tilt measurement (one of the three CCR mirrors being the front mirror on a problem spindle’s nose). Interferometric techniques that facilitated the assembly of ultraprecision machining and metrology machines (3D orthogonal) were developed.

Likewise, decreasing interferometric sensitivity made possible the inspection of nonspecular surfaces. The cost for quality control of mass-produced components (for example, water faucet ceramic seals) was substantially reduced. The inspection technique in use at the time became the standard for expedient handling of samples with interferometric precision.

This relatively recent development focused on measuring tilt error motions of air-bearing spindles, as is amply covered in this book. Tasks that
occur every day in an optical shop—such as centering and homogeneity measurement—are also extensively discussed.

The author gladly shares his recollections and experience with students, scholars, and peers but also wants to give a warning: dealing with optics every day may turn a profession into an obsession!

The author appreciates SPIE for making this publication possible. He also expresses his warm thanks to Prof. Hans Tiziani for frequent, critical discussions.

Peter Langenbeck
May 2014