Tutorial Texts Series

- Modeling the Imaging Chain of Digital Cameras, Robert D. Fiete, Vol. TT92
- Bioluminescence and Fluorescence for In Vivo Imaging, Lubov Brovko, Vol. TT91
- Polarization of Light with Applications in Optical Fibers, Arun Kumar, Ajoy Ghatak, Vol. TT90
- Digital Fourier Optics: A MATLAB Tutorial, David G. Voeltz, Vol. TT89
- Optical Design of Microscopes, George Seward, Vol. TT88
- Nanotechnology: A Crash Course, Raúl J. Martin-Palma and Akhlesh Lakhtakia, Vol. TT86
- Direct Detection LADAR Systems, Richard Richmond, Stephen Cain, Vol. TT85
- Optical Design: Applying the Fundamentals, Max J. Riedl, Vol. TT84
- Fundamentals of Polarimetric Remote Sensing, John Schott, Vol. TT81
- The Design of Plastic Optical Systems, Michael P. Schaub, Vol. TT80
- Fundamentals of Photonics, Chandra Roychoudhuri, Vol. TT79
- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Bioluminescence for Food and Environmental Microbiological Safety, Lubov Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare, Sergio R. Restaino, Vol. TT73
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69
- Artificial Neural Networks: An Introduction, Kevin L. Priddy and Paul E. Keller, Vol. TT68
- Basics of Code Division Multiple Access (CDMA), Raghveer Rao and Sohail Dianat, Vol. TT67
- Optical Imaging in Projection Microlithography, Alfred Kwok-Kit Wong, Vol. TT66
- Metrics for High-Quality Specular Surfaces, Lionel R. Baker, Vol. TT65
- Field Mathematics for Electromagnetics, Photonics, and Materials Science, Bernard Maxum, Vol. TT64
- High-Fidelity Medical Imaging Displays, Aldo Badano, Michael J. Flynn, and Jerzy Kanicki, Vol. TT63
- Diffractive Optics—Design, Fabrication, and Test, Donald C. O’Shea, Thomas J. Suleski, Alan D. Kathman, and Dennis W. Prather, Vol. TT62
- Thin-Film Design: Modulated Thickness and Other Stophand Design Methods, Bruce Perilloux, Vol. TT57
- Optische Grundlagen für Infrarotsysteme, Max J. Riedl, Vol. TT56
- An Engineering Introduction to Biotechnology, J. Patrick Fitch, Vol. TT55
- Image Performance in CRT Displays, Kenneth Compton, Vol. TT54

(For a complete list of Tutorial Texts, see http://spie.org/tt.)
Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover many diverse fields of science and engineering. The initial idea for the series was to make material presented in SPIE short courses available to those who could not attend and to provide a reference text for those who could. Thus, many of the texts in this series are generated by augmenting course notes with descriptive text that further illuminates the subject. In this way, the TT becomes an excellent stand-alone reference that finds a much wider audience than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material covered since 1989. They no longer necessarily stem from short courses; rather, they are often generated independently by experts in the field. They are popular because they provide a ready reference to those wishing to learn about emerging technologies or the latest information within their field. The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, fiber optics, and laser technologies. Authors contributing to the TT series are instructed to provide introductory material so that those new to the field may use the book as a starting point to get a basic grasp of the material. It is hoped that some readers may develop sufficient interest to take a short course by the author or pursue further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs and textbooks in the way in which the material is presented. In keeping with the tutorial nature of the series, there is an emphasis on the use of graphical and illustrative material to better elucidate basic and advanced concepts. There is also heavy use of tabular reference data and numerous examples to further explain the concepts presented. The publishing time for the books is kept to a minimum so that the books will be as timely and up-to-date as possible. Furthermore, these introductory books are competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

James A. Harrington
Rutgers University
Contents

Preface ... xi
Acknowledgments .. xii

Chapter 1 Display Fundamentals .. 1
 1.1 The Lumen ... 1
 1.2 Luminous Flux .. 4
 1.3 Luminous Intensity .. 5
 1.4 Illuminance ... 5
 1.5 Luminance ... 6
 1.6 Grayscale ... 8
 1.7 Contrast Ratio ... 9
 1.8 Dimming Ratio ... 10
 1.9 Duty Factor ... 10
 1.10 Dwell Time .. 10
 1.11 Resolution ... 11
 1.12 Viewing Angle ... 12
 1.13 Color Chromaticity Coordinates 14

Chapter 2 Military Display Technologies ... 17
 2.1 Cathode Ray Tube ... 17
 2.2 Liquid Crystal Display .. 20
 2.2.1 Dichroic liquid crystal display 23
 2.2.2 Twisted nematic liquid crystal display 24
 2.2.3 Passive liquid crystal display 24
 2.2.4 Active matrix liquid crystal display 26
 2.3 Light-Emitting Diode Display 27
 2.3.1 Active matrix organic light-emitting diode 30
 2.4 Electromechanical Displays ... 32
 2.5 Plasma Displays .. 33
 2.5.1 Direct-current plasma displays 37
 2.5.2 Alternating-current plasma displays 38
 2.5.3 Neon ... 38
2.6 Incandescence ... 39
2.7 Electroluminescence ... 40
 2.7.1 Alternating-current thin-film electroluminescence 40
 2.7.2 Alternating-current thick-film electroluminescence 42
 2.7.3 Direct-current thick-film electroluminescence 43
 2.7.4 Direct-current thin-film electroluminescence 44
2.8 Liquid Crystal on Silicon ... 44
2.9 Digital-Micromirror-Device Microelectromechanical System 46
2.10 Biaxial-Scanning-Mirror Microelectromechanical System 47
2.11 Hybrids: Electromechanical Light-Emitting Diodes and Cathode-
 Ray-Tube Liquid Crystal Displays 49
2.12 3D Displays ... 50

Chapter 3 Display Components .. 51
 3.1 Backlights ... 51
 3.1.1 Cold- and hot-cathode fluorescent lamps 51
 3.1.2 Light-emitting diode backlights 53
 3.2 Polarizers ... 55
 3.2.1 Circular and elliptical polarizers 56
 3.3 Dimming Circuitry ... 58
 3.3.1 Cold- and hot-cathode dimming 58
 3.3.2 Light-emitting diode backlight dimming 59
 3.4 Diffusers ... 59
 3.5 Brightness-Enhancement Filters 59
 3.6 Fiber Optic Light Pipe ... 60
 3.7 Color Filters .. 61
 3.8 Tape-Automated Bonding .. 61
 3.9 Chip on Glass .. 63
 3.10 Chip on Foil .. 65

Chapter 4 Military Display Characterization 67
 4.1 Display Categories and Groups 67
 4.2 Size Definition .. 67
 4.3 Direct-View Displays .. 68
 4.4 Virtual-View Displays: Head-Up Displays, Night Vision Goggles,
 Head- or Helmet-Mounted Displays, and Electronic Sights 68
 4.5 Head-Up and Head-Down Displays 69
 4.6 Low- and High-Information Content 69
 4.7 Design Class ... 70
Chapter 5 Military Applications ... 71

5.1 Sizes.. 71
 5.1.1 Display size as a percent of Department of Defense market share 72

5.2 Technologies.. 72
 5.2.1 Vanishing vendor and aging technologies by group 73

5.3 High- Versus Low-Information Content.. 74

5.4 Design Class .. 74

5.5 Performance Parameters .. 76
 5.5.1 Performance parameters for avionics displays 76
 5.5.1.1 Military avionics display sizes ... 76
 5.5.1.2 Military avionics luminance and CR 76
 5.5.1.3 Military avionics display night vision goggle compatibility 87
 5.5.1.4 Military avionics resolution .. 88
 5.5.1.5 Military avionics display viewing angles 88
 5.5.1.6 Military avionics display operating/nonoperating altitude limits ... 89
 5.5.1.7 Military avionics display operating/nonoperating temperature range 89
 5.5.2 Military vetronics display performance parameters 89
 5.5.2.1 Military vetronics display sizes ... 90
 5.5.2.2 Military vetronics luminance and CR 92
 5.5.2.3 Military vetronics resolution .. 92
 5.5.2.4 Military vetronics shock and vibration specifications 94
 5.5.2.5 Military vetronics operating/nonoperating temperature range 100
 5.5.3 Dismounted soldier display performance parameters 100
 5.5.3.1 Dismounted soldier display sizes and technologies 100
 5.5.3.2 Dismounted soldier display luminance and CR 100
 5.5.3.3 Dismounted soldier display resolution 100
 5.5.3.4 Dismounted soldier display gray levels and colors 103
 5.5.3.5 Dismounted soldier display night vision goggle compatibility 103
 5.5.3.6 Dismounted soldier display operating/nonoperating temperature range 107
 5.5.3.7 Dismounted soldier display operating/nonoperating altitude limits ... 107
 5.5.4 C2 facility performance parameters ... 109
 5.5.4.1 C2 facility display sizes and technologies 109
 5.5.4.2 C2 facility display resolution .. 116
5.5.4.3 Summary of research development test and evaluation support complex satellite operations center display performance... 117

Appendix A Symbols, Abbreviations, and Acronyms .. 119
Appendix B Glossary of Military Equipment ... 143
References .. 149
Index .. 153
Preface

This text requires little or no prior knowledge of displays by the reader and only a brief knowledge in the sciences. Therefore, it begins by discussing the fundamentals, commencing with a definition of the lumen, and develops other key concepts such as luminous flux, luminous density, contrast, and gray levels. Every effort has been made to present a simple building-block approach that allows the inter-relation and solidity of these terms to be well understood.

Examples of the many existing display technologies in fielded military systems are discussed, including fading technologies such as cathode ray tubes (CRTs), but also and especially advancing technologies such as active matrix liquid crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs). These discussions are then followed by a look at major display device subcomponents: backlights, polarizers, dimming circuitry, diffusers, light-enhancement filters, color filters, etc.

In Chapter 4, military platform categories and groups are outlined, as these set a basis for design parameters. Fundamental display characteristics are defined (e.g., size, direct or virtual view, head-up or head-down display, low or high information content), further delineating displays, regardless of platform. Design class is included as a way of looking at Department of Defense (DoD) displays according to investment dollars and industrial base.

A major thrust of this tutorial is an overview of the military display market itself, including performance parameter tables for fixed and rotary-wing aircraft, tracked and wheeled vehicles, dismounted soldiers and downed pilots, and command and control (C2) facilities. Included are a number of other tables that lay out more generalized trends in the DoD market, e.g., display size as a percentage of DoD market share, defense display market by technology, defense display market by design class, and identification of vanishing vendor and aging technologies by DoD platform group.

The reader will benefit from this work by gaining a working knowledge of display fundamentals as well as broad insight into the strength and vigor of the DoD display market. With more than 640 weapon-system platforms and 1,200,000 force-projection displays, the DoD display arena is indeed a rather large and growing niche market.

Daniel D. Desjardins
Waynesville, North Carolina
February 2013
Acknowledgments

The author wishes to express his appreciation to the many people with whom he has been associated and who have, by various means, contributed to the writing of this book. First and foremost, the author would like to thank Dr. Darrel G. Hopper, Air Force Research Lab Displays Branch, who initiated and mentored his work on the Military Display Market technical report project at Wright-Patterson AFB OH. This project, involving massive data collection over the course of some 11 years, serves as an underpinning for this book, further augmented by some 16 papers written and presented by the author to SPIE and SID starting in 1997. The author would also like to thank AFRL/RHCV team members: Frederick Meyer, Joseph Ghrayheb, Gurdial Saini, Reginald Daniels, Lt Col Kenneth Wodke, Capt David Haralson, Capt Dan Quast, Capt Steve Beyer, Lt Corbin Koepke, and Jon Neubauer. The author further wishes to recognize and thank his first two display mentors: James C. Byrd, Lead Engineer, Aeronautical Systems Center Displays Branch, Wright-Patterson AFB OH (retired), and Lawrence E. Tannas, Jr., Tannas Electronic Displays, Inc., for their invaluable guidance and training in electronic display fundamentals. Their mentorship and assistance, which began in 1985, continues with this book.