Bibliography

Bibliography

Bibliography

Bibliography

References

Index

180-deg deviation, 63
180-deg rotation, 8
90-deg beam deviation, 63

Abbe error, 31
absolute dn/dT, 101
acceleration, 97
accuracy, 28
active athermalization, 105
active optics, 82
actuators, 27, 82
adaptive optics, 82
adhesion, 46
adhesive properties, 47
adhesive strength, 46
adhesives, 46, 75
adjustable-diameter mount, 52
adjusters, 37
alignment telescope, 108
all-one-material design, 104
Amici roof prism, 63
analysis, 93
anamorphic prism pair, 68
angular deviation, 28
aspect ratio, 80
athermal doublet, 103
athermalization, 103
autocollimator, 109
autostigmatic microscope, 109
axial motion of a lens, 2
axial runout, 30
backlash, 31
baffle threading, 56
baffles, 56

ball in seat, 23
ball-and-socket stage, 30
ball-bearing stages, 29
basic dimensions, 110
Bayar equation, 55
beamsplitters, 67
Biot number, 101
bonding, 53, 66
bonding materials, 50
bulge effect, 15
bulk modulus, 15
cell, 53
cell and set screw, 51, 74
cell and threaded retaining ring, 51
cellular-core mirror, 87
cemented doublets, 50
Ciddor equation, 102
circle, 107
circular/elliptical hinge, 45
clamp forces, 75
clamp load, 36
clamp ing, 53
clamps, 67
clean room, 117
clear aperture, 5
clearance, 54
closed-loop-control, 40
coefficient of thermal expansion (CTE), 98
cohesion, 46
cohesive strength, 46
commercial off-the-shelf (COTS), 51
compliance, 47
compressive, 14
concentricity, 30
Index

confidence value, 7
contoured-back mirror, 86
convergence test, 93
counterweight supports, 82
critical damping, 94
cross-coupling, 31
cross-strip pivots, 44
crossed-roller bearings, 29
cube corner prism, 63
cyanoacrylates, 46
cylinder, 26
damping, 94
damping factor, 94, 95
datum, 110
datum reference frame, 110
degrees of freedom, 22, 23
differential screw, 38
dome, 72
dome stress, 73
double Dove prism, 64
Dove prism, 64
dovetail stages, 29
eccentricity, 30
edge bands, 80
Edlén equation, 102
elastomeric adhesive, 55
elastomers, 46
electroless nickel, 77
electronic drivers, 40
ellipse, 107
encoder, 27
envelope principle, 111
feature control frame, 112
features of size, 111
Federal Standard 209, 117
filters, 67
finite element analysis (FEA), 90
finite element method (FEM), 90
flange retainer, 56
flexural rigidity, 86, 88
flexure mounts, 74
flexures, 29, 41, 67
focus-adjusting wedge system, 68
fused core, 87
galling, 35
general image-motion equations, 4
general image-motion equations, 4
geometric dimensioning and tolerancing (GD&T), 110, 112
gimble mounts, 74
goniometer, 30
gothic-arch, 29
grade, 34
heat flow, 100, 101
Hindle mounts, 81
hollow cube corner, 63
hub mounted, 76
hyperhemispheres, 72
hysteresis, 31
h-adaptive, 91
image motion, 5
image space, 1
inverted, 8
ISO 10110 standard, 113
ISO 14644, 117

Field Guide to Optomechanical Design and Analysis
Index

isolation, 96
jitter, 1
K prism, 64
kinematic design, 22
kinematic mirror mount, 74
Lamé pressure vessel equations, 73
lateral adjustment, 59
lateral motion of a lens, 2
lateral motion of a mirror, 2
lateral supports, 80
law of reflection, 10
leaf flexure, 41
leaf hinge, 45
least material condition (LMC), 111
left-handed, 8
lens, 108
lightweight, 86
limit dimensions, 110
line-of-sight (LOS) error, 1
linear stages, 29
liquid pinning, 39
load capacity, 28
lock, 27
logarithmic decrement, 95
low-order curvature (power), 85
machined seats, 58
manual drivers, 37
margin of safety, 17
maximum amplification at resonance, 95
maximum compressive axial stress, 60
maximum material condition (MMC), 111
mechanical axis, 108
mesh, 91
metal barrel, 57
metering rods, 104
micrometers, 37
microsteppers, 40
Miles equation, 97
mirror matrix, 10
mirror motion, 2
mirror mounted axially (axis vertical), 83
mirror mounted laterally (axis horizontal), 82
mirror substrate, 77
Muench equation, 55
National Institute of Standards and Technology (NIST), 102
natural frequency, 94
nodal points, 91
notch hinge, 45
object space, 1
off-the-shelf mounts, 74
open-back mirror, 88
open-loop-control, 40
optical adhesives, 46
optical axis, 1, 91, 108
optimizing, 93
orientation, 8
outgassing, 47
overconstraint, 22
parabola, 107
parallel leaf strips, 43
parallel spring guide, 43
parametric model, 85
parity, 8
Pascals, 14
peak-to-valley (P–V), 89
peak-to-valley deflection, 85
Pechan prism, 64
Pechan–Schmidt prism, 65
Pechan–Schmidt roof, 65
pencil bounce trick, 8
penta prism, 63
percent collected volatile condensable material (%CVCM), 47
percent total mass lost (%TML), 47
piezoelectric actuators, 40
pip generator, 109
plane parallel plate, 3
point contacts, 25
point supports, 81
Poisson effect, 15
Poisson ratio, 15
Porro erecting system, 65
Porro prism, 63
Porro prism pair, 65
positioner, 31
postprocessing, 93
potted, 70, 75
potting a lens, 55
power spectral density (PSD), 95
ppm, 16
precise motions, 27
precision, 28
precision elastic limit, 16
preload, 36
preload force, 22, 67
preload torque, 54
preprocessing, 91
prism matrix formalism, 65
prism mount, 66
prisms, 62
property class, 34
proportional limit, 16
psi, 14
push-pull screws, 37
p-adapative, 91
rectilinear spring guide, 43
reduced tensile modulus, 43
reduced thickness, 9
relative dn/dT, 101
repeatability, 26, 28
resolution, 28
retaining ring, 52, 58
reversion, 64
reverted, 8
rhomboid prism, 62
right-angle prism, 63
right-handed, 8
rigid body, 6
Risley wedge-prism system, 68
rms deflection, 85
roll, 9
roller chains, 80
roof, 62
root-mean-square (rms), 89
rotation, 6
rotation matrices, 12

Field Guide to Optomechanical Design and Analysis
Index

rotation stages, 30
Rule #1, 111

safety factor, 17
sandwich mirror, 88
sapphire, 70
Schmidt prism, 64
screws, 32
sealed, 57
self-weight deflection, 82
semi-kinematic design, 24
sensitivity, 28
servos, 40
set, 16
shape factor, 48
sharp-corner contact, 60
shims, 38
single-strip flexure, 41
sling supports, 80
snap ring, 52
solver, 93
spacers, 58
spacing adjustments, 59
sphere, 107
spherical contact, 61
spring and locating pins, 67
stages, 27, 28
stepped-barrel, 58
stepper motors, 40
Stewart platform, 31
stiffness, 25, 47
stiffness relations, 42, 44
stiffness-to-weight ratio, 86
straight-barrel design, 58
strain, 14
strap mounts, 80
stray light, 56
strength of the fastener, 34
stress, 14, 25
stress-versus-strain curve, 16
structural adhesives, 46
subcell mounting, 59
supports, 75
system of constraints, 27
table and clamp, 67
tangent flexure mounts, 76
tangential contact, 61
tapping, 33
temperature coefficient of the refractive index, 101
temperature stabilization, 100
tensile, 14
thermal conductivity, 99
thermal diffusivity, 100
thermal effects, 98
thermal gradients, 99
thermal strain, 98
thermal stress, 98
thermal time constant, 100
thin dome, 73
thin-wedge prism, 68
thread classes, 32
threaded inserts, 35
threaded retaining ring, 53
three-pronged lens mount, 52
thumbscrews, 37
tightening torque, 36

Field Guide to Optomechanical Design and Analysis

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 05 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Index

tilt stages, 30
tip/tilt stages, 30
tolerance zone, 110
toroidal contact, 60
toroidal hinges, 45
transient heat flux, 100
translation, 6
transmissibility, 96
travel range, 28
tunnel diagram, 9
ultimate strength, 16
UNC, 32
underconstrained, 22
UNF, 32
Unified Thread Standard (UTS), 32
V-groove clamp mounts, 52
V-mount, 80
van Bezooijen, 55
vibration isolators, 96
washers, 36, 38
wedge, 108
whiffle tree mounts, 81
windows, 69
wobble, 30
yaw, 9
yield strength, 16
Young’s modulus, 15
z axis, 91
Katie Schwertz received her BS in Optics from the University of Rochester Institute of Optics in 2008 and an MS in Optical Sciences from the University of Arizona in 2010. Her graduate work focused on optomechanics, during which she completed the report *Useful Estimations and Rules of Thumb for Optomechanics* under the guidance of Jim Burge. She currently works as an optomechanical designer for Edmund Optics at their Tucson Design Center.

Jim Burge is a Professor of Optical Sciences and Astronomy at the University of Arizona, leading research and curriculum development in the areas of optomechanical engineering, optical-systems engineering, and optical manufacturing. Dr. Burge has a BS degree from Ohio State University in Engineering Physics with Mechanical Engineering, and MS and PhD degrees in Optical Sciences from the University of Arizona.