Appendix A
Mathematical Notations

A.1 Definition of Nicknamed Functions

Circle function:

\[
\text{circ} \left(\frac{r}{D/2} \right) = \text{circ} \left(\frac{\sqrt{x^2 + y^2}}{D/2} \right) = \begin{cases}
1 & r \leq D/2 \\
0 & r > D/2.
\end{cases} \tag{A.1}
\]

Cusp function:

\[
\text{cusp} \left(\frac{r}{R} \right) = \begin{cases}
\frac{2}{\pi} \left[\text{acs} \left(\frac{r}{R} \right) - \frac{r}{R} \sqrt{1 - \left(\frac{r}{R} \right)^2} \right] & \left| \frac{r}{R} \right| \leq 1 \\
0 & \left| \frac{r}{R} \right| > 1.
\end{cases} \tag{A.2}
\]

Rectangle function:

\[
\text{rect} \left(\frac{x}{W/2} \right) = \begin{cases}
1 & x \leq W/2 \\
0 & x > W/2.
\end{cases} \tag{A.3}
\]

Sinc function:

\[
\text{sinc}(x) = \frac{\sin(x)}{x}. \tag{A.4}
\]

Sombrero function:

\[
\text{somb}(r) = \frac{2J_1(r)}{r}, \tag{A.5}
\]

where \(J_1(x) \) is the Bessel function of the first kind, first order.

Struve function:

\[
H_1(x) = \sum_{m=0}^{\infty} (-1)^m \left(\frac{x}{2} \right)^{2(m+1)} \frac{(m+\frac{3}{2})!}{\Gamma \left(m + \frac{3}{2} \right) \Gamma \left(m + \frac{5}{2} \right)}, \tag{A.6}
\]

where \(\Gamma(\cdot) \) is the Gamma function.
A.2 Definition of Functional Operators

Convolution:

\[\text{conv}[f(x), g(x)] = \int_{-\infty}^{\infty} f(y) \cdot g(x - y) \cdot dy \equiv \text{conv}[g(x), f(x)]. \quad (A.7) \]

Correlation:

\[\text{corr}[f(x), g(x)] = \int_{-\infty}^{\infty} f^*(y) \cdot g(x + y) \cdot dy. \quad (A.8) \]

Fourier transform:

\[\mathcal{F}\{f(x)\} = \int_{-\infty}^{+\infty} f(x)e^{-2\pi j \xi x} dx = F(\xi). \quad (A.9) \]

Inverse Fourier transform:

\[\mathcal{F}^{-1}\{F(\xi)\} = \int_{-\infty}^{\infty} F(\xi)e^{2\pi j \xi x} d\xi = f(x). \quad (A.10) \]

Hankel transform:

\[\mathcal{H}\{f(r)\} = 2\pi \int_{0}^{\infty} r \cdot f(r) \cdot J_0(2\pi \rho r)dr = F(\rho), \quad (A.11) \]

where \(J_0(x) \) is the Bessel function of the first kind, zero order.

Inverse Hankel transform:

\[\mathcal{H}^{-1}\{F(\rho)\} = 2\pi \int_{0}^{\infty} \rho \cdot f(\rho) \cdot J_0(2\pi \rho r)d\rho \equiv \mathcal{H}\{F(\rho)\}. \quad (A.12) \]
Appendix B
Herzberger Dispersion Formula

The basic form of the Herzberger formula is

\[n(\lambda) = \gamma_1 + \gamma_2 \lambda^2 + \frac{\gamma_3}{\lambda^2 - \lambda_0^2} + \frac{\gamma_4}{(\lambda^2 - \lambda_0^2)^2}. \] \hspace{1cm} (B.1)

For any dispersive medium, the four coefficients \(\gamma_1 \) through \(\gamma_4 \) have to be determined through the best fit of experimental refractive index data. Equivalently, this relationship can be cast in the form

\[n(\lambda) = a_1(\lambda)n(\lambda_1) + a_2(\lambda)n(\lambda_2) + a_3(\lambda)n(\lambda_3) + a_4(\lambda)n(\lambda_4), \] \hspace{1cm} (B.2)

with the four coefficients \(a_i(\lambda) \) given by

\[a_i(\lambda) = \gamma_{1i} + \gamma_{2i} \lambda^2 + \frac{\gamma_{3i}}{\lambda^2 - \lambda_0^2} + \frac{\gamma_{4i}}{(\lambda^2 - \lambda_0^2)^2}. \]

In matrix form:

\[a_i(\lambda) = \Delta \cdot \gamma_i = \begin{vmatrix} 1 & \frac{1}{\lambda^2 - \lambda_0^2} & \frac{1}{(\lambda^2 - \lambda_0^2)^2} \end{vmatrix} \cdot \begin{pmatrix} \gamma_{1i} \\ \gamma_{2i} \\ \gamma_{3i} \\ \gamma_{4i} \end{pmatrix}, \]

and

\[n(\lambda) = \Delta \cdot \gamma \cdot n = \begin{vmatrix} 1 & \frac{1}{\lambda^2 - \lambda_0^2} & \frac{1}{(\lambda^2 - \lambda_0^2)^2} \end{vmatrix} \cdot \begin{pmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & \gamma_{14} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & \gamma_{24} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & \gamma_{34} \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & \gamma_{44} \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \end{pmatrix}. \]
In particular, Eq. (B.2) must be verified at each wavelength \(\lambda_i, i = 1 \) to 4, which implies \(a_i(\lambda_i) = 1; a_j(\lambda_i)|_{j \neq i} \equiv 0 \) in Eq. (B.2). This translates to

\[
\begin{pmatrix}
1 & \frac{\lambda_1^2}{\lambda_1^2 - \lambda_0^2} & \frac{1}{(\lambda_1^2 - \lambda_0^2)^2} \\
1 & \frac{\lambda_2^2}{\lambda_2^2 - \lambda_0^2} & \frac{1}{(\lambda_2^2 - \lambda_0^2)^2} \\
1 & \frac{\lambda_3^2}{\lambda_3^2 - \lambda_0^2} & \frac{1}{(\lambda_3^2 - \lambda_0^2)^2} \\
1 & \frac{\lambda_4^2}{\lambda_4^2 - \lambda_0^2} & \frac{1}{(\lambda_4^2 - \lambda_0^2)^2}
\end{pmatrix}
\begin{pmatrix}
\gamma_{i1} \\
\gamma_{i2} \\
\gamma_{i3} \\
\gamma_{i4}
\end{pmatrix}
= \begin{pmatrix}
\delta_{i,1} \\
\delta_{i,2} \\
\delta_{i,3} \\
\delta_{i,4}
\end{pmatrix}, \quad (B.3)
\]

where \(\delta_{ji} \) = Kronecker's delta.

Solutions of the four linear systems in Eq. (B.3) for \(i = 1 \) to 4 give the 16 coefficients \(\gamma_{ij} \). Choosing \(\lambda_2^2 = 0.028 \) \(\mu \) \(\text{m}^2; \lambda_1 = \lambda_4 = 0.3650146 \) \(\mu \) \(\text{m}; \lambda_3 = \lambda_F = 0.4861327 \) \(\mu \); \(\lambda_C = 0.6562725 \) \(\mu \); and \(\lambda_4 = \lambda_t = 1.01398 \) \(\mu \); results in

\[
\gamma = \begin{pmatrix}
0.66149637 & -4.20170826 & 6.29866119 & -1.75844930 \\
-0.40355469 & 2.73533632 & -4.69448133 & 2.36269971 \\
-0.28047241 & 1.50549063 & -1.57515162 & 0.35013340 \\
0.03385993 & -0.11593535 & 0.10293414 & -0.02085872
\end{pmatrix}. \quad (B.4)
\]

These values coincide with those of Herzberger to the third or fourth decimal figure, with discrepancies arising primarily because of the finer definition of wavelengths \(\lambda_1 \) to \(\lambda_4 \). They are reported here to overcome a few misprints contained in the paper by Navarro, Santamaría, and Bescós (see Refs. 3,4).

B.1 References

2. Schott Glaswerke, Optical Glass Technical Catalog, Mainz, Germany.
Appendix C

Determination Coefficient R^2

Given n couples of observations (x_i, y_i) and the model function $f = f(x, a)$, where a is a set of m unknown parameters, the fitting problem requires minimization of the discrepancy between observed data y_i and values $f_i = f(x_i, a)$ predicted under the model. According to the method of maximum likelihood, through the assumption of a Gaussian parent distribution determining the probability of making any particular observation, the quantity to be minimized is the sum of squares of residuals:

$$SSq_{res} = \sum_{i=1}^{n} (y_i - f_i)^2. \quad (C.1)$$

The degree of variability or dispersion of the observations is accounted for by the total sum of squares (or deviance):

$$SSq_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad (C.2)$$

where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ is the mean of the observed data, and SSq_{tot} is proportional to the sample variance. The equivalent of Eq. (C.2) for the values predicted by the model is called the explained (or regression) sum of squares, and is given by

$$SSq_{mod} = \sum_{i=1}^{n} (f_i - \bar{y})^2. \quad (C.3)$$

The general definition of the determination coefficient R^2 is

$$R^2 = 1 - \frac{SSq_{res}}{SSq_{tot}}. \quad (C.4)$$
In case of linear regression—that is, when the model $f(x, a)$ is a linear function of parameter set a—the following partition holds:

$$SSq_{tot} = SSq_{res} + SSq_{mod},$$ \hspace{1cm} (C.5)

so that R^2 can be expressed as

$$R^2 = \frac{SSq_{mod}}{SSq_{tot}}.$$ \hspace{1cm} (C.6)

Eq. (C.6) gives R^2 in terms of the explained variance, comparing the variance of the model predictions with the total variance of the data. Under such conditions, R^2 equals the square of the correlation coefficient between observed and predicted data values, and its value ranges in $[0, 1]$.

If $f(x, a)$ is a nonlinear function of parameters a, then the partition in Eq. (C.5) does not hold, becoming

$$SSq_{tot} = SSq_{res} + SSq_{mod} + CPS,$$ \hspace{1cm} (C.7)

with

$$CPS = 2 \sum_{i=1}^{n} (y_i - f_i)(f_i - \bar{y}).$$ \hspace{1cm} (C.8)

The additional term of cross-product sum (CPS) is not identically zero as for linear functions, and can assume either sign. As a consequence, the computational definition of Eq. (C.4) can even yield R^2 values greater than unity or negative.

Rigorously speaking, in nonlinear regression the determination coefficient cannot be interpreted as a goodness-of-fit indicator, quantifying the fraction of deviance explained by the model relative to the total deviance of data. By willing to preserve a pregnant meaning for Eq. (C.6)—as for linear regressions—this could be evaluated as

$$R^2_{eff} = \frac{SSq_{mod}}{SSq_{tot}} = 1 - \frac{SSq_{res} + CPS}{SSq_{tot}}.$$ \hspace{1cm} (C.9)

A numerical example is helpful to clarify the situation, and the case of the chromatic difference of refraction (Section 5.1) is considered here. For the nonlinear regression of Fig. 5.1, the relevant statistical parameters are as follows: $SSq_{tot} = 56.479; SSq_{res} = 1.696; SSq_{mod} = 53.856; and CPS = 0.927$, which correctly satisfy the balance in Eq. (C.7). According
to Eqs. (C.4) and (C.8), the two values $R^2 = 0.970$ and $R_{\text{eff}}^2 = 0.954$ are obtained, which is not a significant difference.

However, the relevance of R^2 (or R_{eff}^2) must not be overrated. By looking at Eqs. (C.2)–(C.4), it can be realized that the determination coefficient quantifies how much more variation in data is explained by the model considered, compared to a null model having only a constant, equal to the data mean. There are two main concerns: how good the model is, and how good the mean is at explaining the data variation, because the better the mean is, the worse the model will look, even though the model is good.

Therefore, the goodness of fit (even for linear regression) should be jointly evaluated through a qualitative impression (by eye inspection: how well the fit curve interprets the data behavior1), and quantitative indication (determination coefficient: how close to unity R^2 is). The eye can often succeed in finding out the fitting behavior that minimizes the distance from the data (SSq_{res}), but fails to rate the quality of the fit. R^2 represents a quality index of immediate comprehension, though with the limits of interpretation outlined before.

For the sake of simplicity only the R^2 values are provided here.

C.1 References

Appendix D
Optical Parameters of the CAGE Eye Model

D.1 Geometrical Parameters

<table>
<thead>
<tr>
<th>Medium</th>
<th>Thickness (mm)</th>
<th>Curvature radius (mm)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>∞</td>
<td>7.7</td>
<td>0.72</td>
</tr>
<tr>
<td>Cornea</td>
<td>0.5</td>
<td>6.8</td>
<td>0.78</td>
</tr>
<tr>
<td>Aqueous humor</td>
<td>3.1</td>
<td>10</td>
<td>-0.89</td>
</tr>
<tr>
<td>Anterior lens cortex</td>
<td>0.546</td>
<td>7.911</td>
<td>1.2</td>
</tr>
<tr>
<td>Lens nucleus</td>
<td>2.419</td>
<td>-5.76</td>
<td>-0.64</td>
</tr>
<tr>
<td>Posterior lens cortex</td>
<td>0.635</td>
<td>-6</td>
<td>-1.3</td>
</tr>
<tr>
<td>Vitreous body</td>
<td>17.185</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.2 Chromatic Dispersion Parameters

Using Eq. (5.1),

\[
n(\lambda) = a_1(\lambda)n_i + a_2(\lambda)n_F + a_3(\lambda)n_C + a_4(\lambda)n_t, \quad (D.1)\]

with
$a_i(\lambda) = \gamma_{1i} + \frac{\gamma_{2i}}{\lambda^2 - \lambda_0^2} + \frac{\gamma_{3i}}{(\lambda^2 - \lambda_0^2)^2}$

and coefficients γ_{1i} given by the matrix in Eq. (B.4).

D.3 Paraxial Properties at Five Wavelengths

D.3.1 Dioptric Powers of Individual Interfaces and Components

<table>
<thead>
<tr>
<th>Optical element</th>
<th>Wavelength (nm)</th>
<th>400</th>
<th>490</th>
<th>587.6</th>
<th>680</th>
<th>770</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant. corneal surf.</td>
<td></td>
<td>50.429</td>
<td>49.432</td>
<td>48.831</td>
<td>48.148</td>
<td>47.302</td>
</tr>
<tr>
<td>Post. corneal surf.</td>
<td></td>
<td>−5.979</td>
<td>−5.947</td>
<td>−5.882</td>
<td>−5.923</td>
<td>−6.053</td>
</tr>
<tr>
<td>Cornea</td>
<td></td>
<td>44.559</td>
<td>43.592</td>
<td>43.053</td>
<td>42.329</td>
<td>41.354</td>
</tr>
<tr>
<td>Ant. lens cortex surf.</td>
<td></td>
<td>5.264</td>
<td>5.055</td>
<td>5</td>
<td>4.991</td>
<td>4.996</td>
</tr>
<tr>
<td>Ant. lens nucleus surf.</td>
<td></td>
<td>2.793</td>
<td>2.662</td>
<td>2.528</td>
<td>2.605</td>
<td>2.851</td>
</tr>
<tr>
<td>Post. lens nucleus surf.</td>
<td></td>
<td>3.836</td>
<td>3.657</td>
<td>3.472</td>
<td>3.578</td>
<td>3.915</td>
</tr>
<tr>
<td>Post. lens cortex surf.</td>
<td></td>
<td>8.773</td>
<td>8.425</td>
<td>8.333</td>
<td>8.319</td>
<td>8.327</td>
</tr>
<tr>
<td>Eye</td>
<td></td>
<td>61.113</td>
<td>59.515</td>
<td>58.636</td>
<td>58.084</td>
<td>57.653</td>
</tr>
</tbody>
</table>
D.3.2 Separations Between Cardinal Points

In millimeters, with F as focal point, P as principal point, N as nodal point, E as pupil, V as vertex, with suffixes f for front and b for back, where, for example, E_f corresponds to the entrance pupil and E_b to the exit pupil.

<table>
<thead>
<tr>
<th>Separation</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td>V_fV_b</td>
<td>7.2</td>
</tr>
<tr>
<td>V_fF_b</td>
<td>23.688</td>
</tr>
<tr>
<td>V_fP_f</td>
<td>1.37</td>
</tr>
<tr>
<td>V_fP_b</td>
<td>1.636</td>
</tr>
<tr>
<td>V_fN_f</td>
<td>7.058</td>
</tr>
<tr>
<td>V_fN_b</td>
<td>7.325</td>
</tr>
<tr>
<td>V_fE_f</td>
<td>3.031</td>
</tr>
<tr>
<td>$P_fN_f = P_bN_b$</td>
<td>5.689</td>
</tr>
<tr>
<td>$F_fP_f = N_bF_b$</td>
<td>16.363</td>
</tr>
<tr>
<td>$F_fN_f = P_bF_b$</td>
<td>22.052</td>
</tr>
</tbody>
</table>

D.4 Ray-Transfer Matrix Elements

From anterior cornea to posterior lens surface

<table>
<thead>
<tr>
<th>Matrix element</th>
<th>Unit</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>A_E</td>
<td>–</td>
<td>0.74768</td>
</tr>
<tr>
<td>B_E</td>
<td>m</td>
<td>$5.1527 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>C_E</td>
<td>–</td>
<td>-61.113</td>
</tr>
<tr>
<td>D_E</td>
<td>D</td>
<td>0.9163</td>
</tr>
</tbody>
</table>
Appendix E
Visual Acuity Lines

Qualitative VA evaluations such as counting fingers and hand motion have been quantitatively measured to correspond to logMAR values of +1.85 (range 1.7 to 2) and +2.28 (range 2.05 to 2.48), although very different equivalences have also been proposed.

E.1 References

Table E.1 Comparison of VA levels (lines) in different notations, together with values of MAR and maximum angular frequency ψ_M. The relevant equations connecting all of these quantities are reported in Section 18.2.

<table>
<thead>
<tr>
<th>LogMAR</th>
<th>VA notations</th>
<th>Snellen fraction</th>
<th>MAR (arcmin)</th>
<th>Max frequency ψ_M (cpd)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+2</td>
<td>0.01</td>
<td>0.1/10</td>
<td>6/600</td>
<td>20/2000</td>
<td>100^m</td>
</tr>
<tr>
<td></td>
<td>0.0125</td>
<td>0.125/10</td>
<td>6/480</td>
<td>20/1600</td>
<td>$79^{m.26}$</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.16/10</td>
<td>6/380</td>
<td>20/1250</td>
<td>$63^{m.06}$</td>
</tr>
<tr>
<td>+1.7</td>
<td>0.02</td>
<td>0.2/10</td>
<td>6/300</td>
<td>20/1000</td>
<td>$50^{m.07}$</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.25/10</td>
<td>6/240</td>
<td>20/800</td>
<td>$39^{m.48}$</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.32/10</td>
<td>6/200</td>
<td>20/630</td>
<td>$31^{m.37}$</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.4/10</td>
<td>6/150</td>
<td>20/500</td>
<td>$25^{m.07}$</td>
</tr>
<tr>
<td>+1.6</td>
<td>0.063</td>
<td>0.63/10</td>
<td>6/100</td>
<td>20/320</td>
<td>$15^{m.50}$</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.8/10</td>
<td>6/75</td>
<td>20/250</td>
<td>$12^{m.35}$</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>1/10</td>
<td>6/60</td>
<td>20/200</td>
<td>10^{m}</td>
</tr>
<tr>
<td>+1.3</td>
<td>0.05</td>
<td>0.5/10</td>
<td>6/120</td>
<td>20/400</td>
<td>8^m</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>1.25/10</td>
<td>6/48</td>
<td>20/160</td>
<td>$6^{m.18}$</td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>1.6/10</td>
<td>6/38</td>
<td>20/125</td>
<td>$5^{m.18}$</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2/10</td>
<td>6/30</td>
<td>20/100</td>
<td>4^{m}</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>2.5/10</td>
<td>6/24</td>
<td>20/80</td>
<td>$3^{m.09}$</td>
</tr>
<tr>
<td>+0.9</td>
<td>0.32</td>
<td>3.2/10</td>
<td>6/20</td>
<td>20/63</td>
<td>$2^{m.30}$</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>4/10</td>
<td>6/15</td>
<td>20/50</td>
<td>$2^{m.30}$</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>5/10</td>
<td>6/12</td>
<td>20/40</td>
<td>2^{m}</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>6.3/10</td>
<td>6/10</td>
<td>20/32</td>
<td>$1^{m.35}$</td>
</tr>
<tr>
<td>+0.5</td>
<td>0.8</td>
<td>8/10</td>
<td>6/7.5</td>
<td>20/25</td>
<td>$1^{m.15}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10/10</td>
<td>6/6</td>
<td>20/20</td>
<td>1^{m}</td>
</tr>
<tr>
<td>−0.1</td>
<td>1.25</td>
<td>12.5/10</td>
<td>6/5</td>
<td>20/16</td>
<td>$0^{m.47}$</td>
</tr>
<tr>
<td>−0.2</td>
<td>1.6</td>
<td>16/10</td>
<td>6/3.75</td>
<td>20/12.5</td>
<td>$0^{m.38}$</td>
</tr>
<tr>
<td>−0.3</td>
<td>2</td>
<td>20/10</td>
<td>6/3</td>
<td>20/10</td>
<td>$0^{m.30}$</td>
</tr>
<tr>
<td>−0.4</td>
<td>2.5</td>
<td>25/10</td>
<td>6/2.4</td>
<td>20/8</td>
<td>$0^{m.24}$</td>
</tr>
<tr>
<td>−0.5</td>
<td>3.2</td>
<td>32/10</td>
<td>6/2</td>
<td>20/6.3</td>
<td>$0^{m.19}$</td>
</tr>
<tr>
<td>−0.6</td>
<td>4</td>
<td>40/10</td>
<td>6/1.5</td>
<td>20/5</td>
<td>$0^{m.15}$</td>
</tr>
</tbody>
</table>
Appendix F
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AFC</td>
<td>Two alternatives forced choice</td>
</tr>
<tr>
<td>2D</td>
<td>Bidimensional</td>
</tr>
<tr>
<td>AECD</td>
<td>Airy-disk energy content diameter</td>
</tr>
<tr>
<td>ALSF</td>
<td>Amplitude line spread function</td>
</tr>
<tr>
<td>ASF</td>
<td>Amplitude spread function</td>
</tr>
<tr>
<td>BF</td>
<td>Binocularity factor</td>
</tr>
<tr>
<td>BFD</td>
<td>Back focal distance</td>
</tr>
<tr>
<td>BLINCS</td>
<td>Bilogarithmic integral of normalized contrast sensitivity</td>
</tr>
<tr>
<td>CAGE</td>
<td>Chromatic aspherical Gullstrand exact</td>
</tr>
<tr>
<td>CDR</td>
<td>Chromatic difference of refraction</td>
</tr>
<tr>
<td>ChTF</td>
<td>Coherent transfer function</td>
</tr>
<tr>
<td>CIE</td>
<td>Commission Internationale de l’Éclairage</td>
</tr>
<tr>
<td>cpd</td>
<td>Cycles per degree</td>
</tr>
<tr>
<td>CPS</td>
<td>Cross products sum</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode ray tube</td>
</tr>
<tr>
<td>CS</td>
<td>Contrast sensitivity</td>
</tr>
<tr>
<td>CSF</td>
<td>Contrast sensitivity function</td>
</tr>
<tr>
<td>CTF</td>
<td>Contrast transfer function</td>
</tr>
<tr>
<td>DDD</td>
<td>Discriminable difference diagrams</td>
</tr>
<tr>
<td>DL</td>
<td>Diffraction limited</td>
</tr>
<tr>
<td>DLHE</td>
<td>Diffraction limited with hard-edge pupil</td>
</tr>
<tr>
<td>DLSC</td>
<td>Diffraction limited with Stiles–Crawford tapered pupil</td>
</tr>
<tr>
<td>DoG</td>
<td>Difference of Gaussians</td>
</tr>
<tr>
<td>ESA</td>
<td>External spherical aberration</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier transform</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>GRIN</td>
<td>Graded index</td>
</tr>
<tr>
<td>GVA</td>
<td>Grating visual acuity</td>
</tr>
<tr>
<td>HE</td>
<td>Hard edge</td>
</tr>
<tr>
<td>ICS</td>
<td>Integrated contrast sensitivity</td>
</tr>
<tr>
<td>IFT</td>
<td>Inverse Fourier transform</td>
</tr>
<tr>
<td>INCS</td>
<td>Integral of normalized contrast sensitivity</td>
</tr>
<tr>
<td>IQ</td>
<td>Image quality</td>
</tr>
<tr>
<td>ISA</td>
<td>Internal spherical aberration</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>jnd</td>
<td>Just noticeable difference</td>
</tr>
<tr>
<td>LCA</td>
<td>Longitudinal chromatic aberration</td>
</tr>
<tr>
<td>LGN</td>
<td>Lateral geniculate nucleus</td>
</tr>
<tr>
<td>LI</td>
<td>Lateral inhibition</td>
</tr>
<tr>
<td>LINCS</td>
<td>Logarithmic integral of normalized contrast sensitivity</td>
</tr>
<tr>
<td>LSA</td>
<td>Longitudinal spherical aberration</td>
</tr>
<tr>
<td>LSF</td>
<td>Line spread function</td>
</tr>
<tr>
<td>MAR</td>
<td>Minimum angle of resolution</td>
</tr>
<tr>
<td>MCF</td>
<td>Mutual coherence function</td>
</tr>
<tr>
<td>MIF</td>
<td>Mutual intensity function</td>
</tr>
<tr>
<td>MIS</td>
<td>Mutual intensity spectrum</td>
</tr>
<tr>
<td>MON</td>
<td>Monochromatic illumination spectrum</td>
</tr>
<tr>
<td>MTF</td>
<td>Modulation transfer function</td>
</tr>
<tr>
<td>MTFA</td>
<td>Modulation transfer function area</td>
</tr>
<tr>
<td>OC</td>
<td>Optimum cornea</td>
</tr>
<tr>
<td>OPD</td>
<td>Optical path difference</td>
</tr>
<tr>
<td>OTF</td>
<td>Optical transfer function</td>
</tr>
<tr>
<td>PF</td>
<td>Psychometric function</td>
</tr>
<tr>
<td>PSF</td>
<td>Point spread function</td>
</tr>
<tr>
<td>PTF</td>
<td>Phase transfer function</td>
</tr>
<tr>
<td>REC</td>
<td>Radial energy content</td>
</tr>
<tr>
<td>RF</td>
<td>Receptive field</td>
</tr>
<tr>
<td>RG</td>
<td>Retinal gain</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>SA</td>
<td>Spherical aberration</td>
</tr>
<tr>
<td>SECD</td>
<td>Sinc-lobe energy content diameter</td>
</tr>
<tr>
<td>SLE</td>
<td>Spectral luminous efficiency</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
</tr>
<tr>
<td>SPH</td>
<td>Spherical Gullstrand eye model</td>
</tr>
<tr>
<td>SQF</td>
<td>Subjective quality factor</td>
</tr>
<tr>
<td>SQRI</td>
<td>Square root integral</td>
</tr>
<tr>
<td>SR</td>
<td>Strehl ratio</td>
</tr>
<tr>
<td>TA</td>
<td>Ray transverse aberration</td>
</tr>
<tr>
<td>TEC</td>
<td>Transverse energy content</td>
</tr>
<tr>
<td>TMF</td>
<td>Threshold modulation function</td>
</tr>
<tr>
<td>TSA</td>
<td>Transverse spherical aberration</td>
</tr>
<tr>
<td>UR</td>
<td>Struve ratio</td>
</tr>
<tr>
<td>UVL</td>
<td>Ultimate visual limit</td>
</tr>
<tr>
<td>VA</td>
<td>Visual acuity</td>
</tr>
<tr>
<td>vpt</td>
<td>Visual performance tile</td>
</tr>
<tr>
<td>WHT</td>
<td>Broadband illumination spectrum</td>
</tr>
<tr>
<td>WRC</td>
<td>Windowing resolution correction</td>
</tr>
</tbody>
</table>
Index

A
Abbe value, see costringence
aberration, 22, 317, 353
 chromatic, 81, 148, 153, 241, 317, 354, 355, 357
 monochromatic, 72, 81, 153, 164, 241, 289
 odd/even, 8
 rms, 96
 spherical (SA), 59, 74, 81, 93, 95, 121, 148, 154, 156, 224, 270, 317, 318, 355, 357
aberration function, 23, 59,
 65–67, 72, 96, 98, 105, 106, 151, 291, 353, 355
aberrometry, 7, 95, 148
accommodation, 297, 299, 353
adaptation, 340, 349
adaptation technique, 327
Airy disk, 39, 115, 128
Airy disk energy content diameter
 (AECD), 127–132
aliasing, 173, 270, 271
amplitude spread function (ASF), 22, 31, 37
 chromatic, 58, 59
 monochromatic, 105
apodization
 pupil, 31, 106, 112
asphericity, 19, 20, 73, 75, 77, 81, 355
autocorrelation, 38, 42, 67, 107

B
Barten model, see psychophysical model, 71
best-fitting, 31, 55, 71, 74, 78, 227, 330, 355
global, 189, 192, 200, 204, 225, 228
local, 189–200, 205, 206, 225, 227, 228
bilogarithmic integral of
 normalized contrast sensitivity
binocularity factor (BF), 180
broadband illumination, 109, 119, 120, 265–286, 356

C
CAGE model, see eye model
Campbell–Gubisch experiment, 8–11, 29, 30, 35, 36, 47, 69, 70, 74, 75, 77, 78, 81, 148, 354
chromatic difference of refraction
 (CDR), 54, 55, 364
coherence
 partial, 9, 36, 40, 73, 74, 77
 spectral, 36, 62
cohherent transfer function
 (ChTF), 22, 24, 40
color vision, 153, 320
cone photoreceptors, 29, 112, 257
density, 152, 173, 258, 303, 306, 347, 357
phototransduction, 326
size, 172, 304
spacing, 170, 172, 173, 272, 304
conic constant, 20
conicoid, 19, 65
contrast, 153, 169, 171, 243
adaptation, 217
Michelson, 170, 186, 209
reversal, 211, 276
rms, 186, 207
contrast sensitivity (CS), 147, 207, 256, 356
line, 256
contrast sensitivity function (CSF), 147, 163, 165, 170, 185–187, 191–200, 228, 242, 245, 246, 268, 330, 332
defocused, 210–218, 224, 273
notches, 211, 214, 275
sidelobes, 211, 214
contrast sensitivity function (CSF) acquisition method 2AFC, 186, 188, 230, 248
adjustment, 186, 188, 203
constant stimuli, 226
cutoff angular frequency, 107, 116, 147
cutoff integration size, 179, 287, 326, 345, 348
cutoff integration time, 179, 287, 325
cutoff number of cycles, 179, 181, 182, 218, 287, 326, 345, 348
contrast transfer function (CTF), 245, 246, 268
defocus, 32, 254, 275
determination coefficient, see R2
difference of Gaussians (DoG) model, 175, 304
depth of focus, 76
diffraction, 22, 75, 105, 116, 148, 154
Fresnel approximation, 22, 58, 123, 355
integral, 22, 355
limit, 39, 44, 120, 355
Dirac delta, 22, 35, 37, 173, 211, 335
discriminable difference diagrams (DDD), 247, 250
DoG model, 175
decision, 153, 314, 317–322
defocus, 32, 254, 275
determination coefficient, see R2
difference of Gaussians (DoG) model, 175, 304
diffraction, 22, 75, 105, 116, 148, 154
Fresnel approximation, 22, 58, 123, 355
integral, 22, 355
limit, 39, 44, 120, 355
Dirac delta, 22, 35, 37, 173, 211, 335
discriminable difference diagrams (DDD), 247, 250
DoG model, 175
decision, 153, 314, 317–322
C
curve-fitting, 72
cutoff angular frequency, 107, 116, 147
cutoff integration size, 179, 287, 326, 345, 348
cutoff integration time, 179, 287, 325
cutoff number of cycles, 179, 181, 182, 218, 287, 326, 345, 348
D
defocus, 32, 254, 275
determination coefficient, see R2
difference of Gaussians (DoG) model, 175, 304
diffraction, 22, 75, 105, 116, 148, 154
Fresnel approximation, 22, 58, 123, 355
integral, 22, 355
limit, 39, 44, 120, 355
Dirac delta, 22, 35, 37, 173, 211, 335
discriminable difference diagrams (DDD), 247, 250
DoG model, 175
decision, 153, 314, 317–322
emmetropia, 126, 164, 299
energy conservation, 116
evolution, 153, 314, 317–322
external spherical aberration (ESA), 93
eye model, 5, 290, 354
 CAGE, 74, 77, 81, 87–94, 98, 119–144, 120, 149, 150, 172, 293, 367–369
diffraction-limited, 72, 108, 151
 DLHE, 119–144, 152, 154
 DLSC, 119–144, 152, 154, 155, 270
finite, 6, 354
Gullstrand exact (SPH), 16, 17, 56, 72, 88, 89, 93, 94, 98, 119–144, 151, 270, 354
Gullstrand GRIN, 16, 17, 56, 65, 72, 74, 80, 93, 94, 98
Liou–Brennan (LB), 93, 94, 96, 98, 99
Navarro–Santamaría–Bescós (NSB), 57, 93, 95, 96, 98, 290, 362
eye–photocamera comparison, 241, 325, 353

F
fast Fourier transform (FFT), 67, 114
figure of merit, 69
floating-point operation (flop), 67, 113, 116
Foucault grating, see grating, square-wave
Fourier analysis, 7, 106, 163, 209, 326
Fourier transform (FT), 22, 24, 41, 46, 67, 106, 113, 172, 176, 335, 360
 inverse (IFT), 107, 115, 360
fovea,
curvature, 32
size, 258, 303
foveola, 258
Fresnel number
collimated, 115
full width at half maximum (FWHM),
 LSF, 135, 136
 PSF, 127, 130
fundus reflection, 10, 29, 46, 59, 72–74, 77
G
Gaussian focus, see paraxial focus
Gibb’s phenomenon, 213
goodness of fit, 31, 189, 364
grating
 exposure time, 283
 orientation, 185, 234
 sine-wave, 327
 sinusoidal, 147, 165, 170, 171, 186–200, 203, 205–209, 327, 344, 353
 size, 281, 282
 spectrum, 334
 square-wave, 174, 207–210, 296, 298, 327
H
Hankel transform (HT), 106, 113, 304, 335, 360
harmonic frequencies, 209, 327, 331
Herzberger formula, 54–56, 361
hyperopia, 24, 90, 105, 106, 122, 126, 299, 355
hypovision
 counting fingers, 257, 371
 hand motion, 257, 371
I
illuminance
 retinal, 177, 182, 189, 193, 198, 200, 203–206, 223, 264, 297, 317, 337
illuminant A, 110, 111, 119
image quality (IQ), 242, 248–254, 293
impulse function, see Dirac delta
incoherent illumination, 42, 47, 73, 107
individual variability, 231
integral of normalized contrast sensitivity (INCS), 251, 253
integrated contrast sensitivity (ICS), 247
integration, 66, 67
spatio-temporal of the eye, 179, 219, 325, 348
internal spherical aberration (ISA), 94
interpolation, 60, 65, 67, 116, 331
irradiance
foveal, 112, 172, 356
ISA, 94
isoplanaticity, see space-shift invariance

L
lateral inhibition (LI), 174, 181, 182, 245, 303
cutoff frequency, 176, 219, 287, 304
least-confusion circle, 75, 151, 355
Levenberg–Marquardt algorithm, 31
line spread function (LSF), 8, 30, 70, 78, 132, 134, 135, 172, 241, 335, 354
coherent, 43, 45
incoherent, 43, 45
partially coherent, 44, 45, 60
logarithmic integral of normalized contrast sensitivity (LINCS), 251, 252
longitudinal chromatic aberration (LCA), 58
longitudinal spherical aberration (LSA), 94
luminance, 153, 176
object and ambient, 191, 192, 194–197, 199, 205, 209, 252, 256, 264, 269, 277, 280, 312, 313
M
magnification
entrance to exit pupil, 59, 90
Maréchal criterion, 110, 121, 152
masking technique, 327
oblique, 327
maximum likelihood, 71, 191, 363
mesopic vision, 153, 225, 302, 339
minimum angle of resolution (MAR), 163, 245
minimum blur, see least-confusion circle
Minkowski metric, 329
modulation, 169
noise equivalent, 176
modulation transfer area (MTFA), 247
modulation transfer function (MTF), 107, 113, 138, 139, 169, 181, 182, 241, 243, 244, 250, 289, 292
aberrometric, 149, 150
bandwidth, 140–142
coherent, 42
double-pass, 148, 149
incoherent, 42
interferometric, 147, 149
neural, 174, 292
optical, 172, 209, 235
partially coherent, 41
retinal, 170, 172, 182, 303
monochromatic illumination, 72, 73, 119, 120, 151, 154, 181, 187, 203, 206, 267–283, 320, 356
Monte Carlo method, 55, 71, 189
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutual coherence function (MCF), 35</td>
</tr>
<tr>
<td>mutual intensity function (MIF), 36</td>
</tr>
<tr>
<td>mutual intensity spectrum (MIS), 38</td>
</tr>
<tr>
<td>myopia, 24, 90, 105</td>
</tr>
</tbody>
</table>

N
- neural cells, 174, 303, 335
 - complex, 344, 345
 - density, 229
 - edge detector, 343
 - line detector, 343
 - on- and off-center, 342
 - simple, 342, 343
- noise, 169–171, 176
 - neural, 169, 178, 181, 182, 219, 265, 321, 350
 - photon, 169, 177, 181, 265, 315
 - spectral density, 176, 177, 190, 229, 231, 284, 286
- nonlinearity, 31, 72, 97, 234, 249, 327, 329, 364
- null hypothesis, 73, 78, 80, 190
- Nyquist criterion, 67, 272
- Nyquist frequency, 173

O
- optical path difference (OPD), 23, 65, 96
- optical performance
 - ocular, 152, 155
- optical transfer function (OTF), 106
- optotype chart, 257, 290, 294, 295

P
- p-values, 20, 21, 69, 71, 76, 79, 155, 156
- paraxial focus, 76, 90, 121–144, 150, 356
- phase transfer function (PTF), 107, 140
- photon conversion factor, 178
- photopic luminous efficiency (SLE), 35, 36, 110, 111, 148, 178
- point spread function (PSF), 7, 22, 106, 126, 128, 241, 289, 337
- psychometric function, 186, 188, 226, 227, 229
- psychophysical model, 165, 233–235, 356
 - Barten, 166, 169, 179, 182, 219, 228, 232, 235
- psychophysics, 163
- pupil, 90
 - artificial, 188, 203
 - entrance, 65, 75, 90, 105, 106, 119, 177, 192, 199
 - exit, 48, 65, 75, 90, 105, 106
 - light response, 189, 264, 266, 270, 357
 - natural, 186, 189, 205, 224, 264, 302
- pupil function, 29, 67, 105, 107, 111, 216
 - backward-pass, 31, 59
 - forward-pass, 24, 59

Q
- quantum efficiency
 - retinal, 177, 190, 203, 227, 231, 284, 285, 317

R
- R^2 (determination coefficient), 56, 71, 72, 74, 148, 190, 192, 204, 211, 214, 218, 251, 330, 339, 363–365
- radial energy content (REC), 127–129
ray tracing, 65, 97, 355
ray-transfer matrix, 18, 22, 55, 58, 89, 91, 355, 369
ray-transverse aberration (TA), 66
receptive field (RF)
 for foveal vision, 179, 218, 304
 neuronal, 174, 342, 347
reciprocity, 31
reference visual condition, 263
refractive error, 164, 299, 300
refractive index, 53, 54, 65, 152
 chromatic dispersion, 56, 57, 73, 88, 91, 314, 318, 367
 graded, 16, 66, 95, 354
 keratometric, 99
refractive media transmittance, 229, 231
refractive surgery, 156, 164, 289, 311, 354, 356
retinal gain, 108, 141, 142, 144, 356
retinal magnification factor, 106, 173, 346
retinal summation, 169, 174, 234, 315, 321, 322, 357
rms error (RMSE), 214, 216, 218
rod photoreceptor, 153, 314
S
schematic eye, *see eye model*
scoptic vision, 225, 303, 353
sensitivity
 square-wave to sinusoidal gratings, 331, 333
shape factor, 20
signal-to-noise ratio (SNR), 169, 171, 226–231
sinc-lobe energy content diameter (SECD), 137
space-shift invariance, 7, 23, 38, 39
spatial frequency channel, 234, 326–350, 358
 CSF, 328
frequency bandwidth, 328, 330, 331, 335
frequency spacing, 330, 332
number, 328, 330, 335
peak frequency, 328, 332, 335, 339, 347, 349
receptive field, 335, 336, 338, 349
summation, 328, 329, 332, 342
spurious resolution, 217, 276, 278, 302
square-root integral (SQRI), 247, 251
Stiles–Crawford effect, 31, 106, 112, 132, 141, 154, 155, 177, 322–324, 355
 compensation for spherical aberration, 154, 155, 324
Strehl ratio (SR), 110, 120, 121, 123–126, 155, 355
Struve ratio (UR), 112, 132, 133
subjective quality factor (SQF), 247
sum of square deviations
 of data from mean, 363
 of fit from data, 55, 69, 189, 363
 of fit from mean, 363
summation technique, 327, 337
supernormal vision, 164
superposition, 7, 43, 48, 62, 75, 107, 109, 327
T
threshold modulation function (TMF), 170, 209, 243, 244, 290
transverse energy content, (TEC), 134, 135
transverse spherical aberration (TSA), 96
U
undetectability of stimulus, 340
V
Van Cittert–Zernike theorem, 36
visual acuity (VA), 163, 165, 218, 245, 289, 294–299
defocused, 299–302
line, 164, 254, 372
notations, 245, 372
visual channels, see spatial frequency channel
visual perception model, see psychophysical model
visual performance, 163, 242, 258, 263–287, 289, 353, 354
binocular, 284
metric, 243–259
ultimate visual limit (UVL), 314–320
visual performance tile (vpt), 255
W
Weber law, 178, 188, 247, 259
white-light illumination, 265
windowing resolution correction (WRC), 213, 216, 274, 334
Z
Zernike spectrum of aberration function, 95, 291
The Pizzomunno monolith emerging from the Adriatic Sea at Vieste, Italy. The very embryo of this book was conceived while swimming in these wonderful waters. The photo is a tribute to the genius loci, and to his gift of serendipitous inspiration.
Pier Giorgio (“Giò”) Gobbi was born in 1953 in Mantua, Italy, where he completed his classical studies at the Liceo-Ginnasio Virgilio. In 1976 he graduated cum laude in Electrical Engineering at the University of Pavia as an alumnus of the historical Collegio Ghislieri. He has been involved in various research fields including physics of laser-produced plasmas, physics and technology of laser sources, design of medical optoelectronic instrumentation, biomedical applications of lasers, physics of visual refraction, and eye modeling. He is author/co-author of more than 70 publications in scientific journals and books, more than 50 presentations at scientific conferences, and 10 national and international patents. He is currently with the Scientific Institute Hospital San Raffaele in Milan.