Field Guide to

Digital Micro-Optics

Bernard C. Kress

SPIE Field Guides Volume FG33

John E. Greivenkamp, Series Editor

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Kress, Bernard C., author.
Digital micro-optics / Bernard C. Kress.
pages cm. – (The field guide series; FG33)
Includes bibliographical references and index.
ISBN 978-1-62841-183-6
Optoelectronic devices–Design and construction.
Optical MEMS. 3. Integrated optics. 4. Digital
electronics. 5. Diffraction gratings. I. Title.
TK8360.068K74 2014
621.36–dc23

2014016927

Published by SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: 360.676.3290 Fax: 360.647.1445 Email: Books@spie.org www.spie.org

Copyright $\ensuremath{\mathbb{C}}$ 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing.

Introduction to the Series

Welcome to the SPIE Field Guides—a series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The *SPIE Field Guides* are intended to be living documents. The modular page-based presentation format allows them to be updated and expanded. We are interested in your suggestions for new *Field Guide* topics as well as what material should be added to an individual volume to make these *Field Guides* more useful to you. Please contact us at **fieldguides@SPIE.org**.

John E. Greivenkamp, *Series Editor* College of Optical Sciences The University of Arizona Keep information at your fingertips with all of the titles in the Field Guide Series:

Adaptive Optics, Second Edition, Robert Tyson & Benjamin Frazier Atmospheric Optics, Larry Andrews Binoculars and Scopes, Paul Yoder, Jr. & Daniel Vukobratovich Diffractive Optics, Yakov Soskind Digital Micro-Optics, Bernard Kress Displacement Measuring Interferometry, Jonathan Ellis Geometrical Optics, John Greivenkamp Holography, Pierre-Alexandre Blanche Illumination, Angelo Arecchi, Tahar Messadi, & John Koshel Image Processing, Khan M. Iftekharuddin & Abdul Awwal Infrared Systems, Detectors, and FPAs, Second Edition, Arnold Daniels Interferometric Optical Testing, Eric Goodwin & Jim Wyant Laser Pulse Generation. Rüdiger Paschotta Lasers, Rüdiger Paschotta Lens Design, Julie Bentley & Craig Olson *Microscopy*, Tomasz Tkaczyk Nonlinear Optics, Peter Powers Optical Fabrication, Ray Williamson Optical Fiber Technology, Rüdiger Paschotta *Optical Lithography*, Chris Mack Optical Thin Films, Ronald Willey Optomechanical Design and Analysis. Katie Schwertz & James Burge Physical Optics, Daniel Smith Polarization, Edward Collett Probability, Random Processes, and Random Data Analysis, Larry Andrews Radiometry, Barbara Grant Special Functions for Engineers, Larry Andrews Spectroscopy, David Ball Terahertz Sources, Detectors, and Optics, Créidhe O'Sullivan & J. Anthony Murphy Visual and Ophthalmic Optics, Jim Schwiegerling

Field Guide to Digital Micro-Optics

The term "digital micro-optics" was introduced in the early 1990s to refer to a specific variety of micro-optics. It is now widely accepted by industry and academia. Digital microoptics can be related to their counterparts in the electronics realm—"digital electronics," or "integrated electronics" (ICs)—in various ways, from design to modeling, from prototyping to mass fabrication, and eventually system integration. Historically, the term "digital" in digital electronics refers to three aspects:

- their digital functionality (binary logic),
- the way they are designed via a digital computer, and
- the way they are fabricated (through sets of digital or binary masks).

In digital micro-optics, the term primarily refers to how such optics are designed and fabricated, similar to digital electronics, through specific electronic-design-automation (EDA) software packages and sets of digital masks. Traditional macro-optics, such as telescopes, microscopes, and other imaging optics, have been designed without complex design software tools. Digital optics, especially wafer-scale microoptics, cannot be designed without specific software and tools. Digital layouts for wafer-level fabrication of micro-optics are also often generated by algorithms similar to the ones used in conventional EDA tools (Cadence, Synopsys, Mentor-Graphics, etc.). Because there is often no analytical solution to the micro-optics design problem, complex iterative optimization algorithms may be required to find an adequate solution.

Unlike digital electronics, digital micro-optics can implement either digital or analog functionality, or a combination thereof. A typical digital function may be a fan-out beam splitter, and an analog function may be an imaging task. A hybrid may result in a complex multifocus imaging lens, a function impossible to implement in traditional analog macro-optics.

> Bernard C. Kress Google [X] Labs, Mountain View, CA

Glossary	xii
Refractive Micro-Optics	1
Digital Micro-Optics	1
Naming Conventions	2
Free-Space and Guided-Wave Micro-Optics	3
Maximizing the Refractive Effect	4
Maximizing the Diffractive Effect	5
Total Internal Reflection	6
Guided-Wave Digital Optics	7
Optical Waveguide Types	8
Modes in Optical Waveguides	9
Coupling Losses in Optical Waveguides	10
Free-Space Micro-Optics	11
Graded-Index Micro-Optics	12
GRIN Lenses	13
Spectral Dispersion in Micro-Optics	14
Imaging with Microlens Arrays	15
Light-Field Cameras	16
Light-Field Displays	17
Beam Steering with MLAs	18
Beam Shaping/Homogenizing with MLAs	19
Diffractive Micro-Optics	20
Digital Diffractive Optics	20
Analytic and Numeric Diffractives	21
Fresnel and Fourier Diffraction Regimes	22
Fourier and Fresnel Diffractive Optics	23
Analytic Diffractive Elements	24
Reflective Gratings	25
Amplitude Gratings	26
Binary Phase Gratings	27
Multilevel Diffractives	28
Diffractive Lens Surface Profiles	29
Diffraction Efficiency	30
Diffractive Fresnel Lens	31
Diffractive Lens Profile Descriptions	32
Microlens Parameters	33
Spectral Bandwidth of Diffractives	34

Broadband Diffractives	35			
Achromatizing Hybrid Lenses				
Athermalizing Hybrid Lenses				
Hybrid-Lens Surface Descriptions				
Hybrid Refractive/Diffractive Lens	39			
Aberrations in Micro-Optics	40			
Beam-Shaping Lenses	42			
Vortex Microlenses	43			
Extended Depth of Focus Microlenses	44			
Aperture and Wavefront Coding	45			
Spatially Multiplexed Planar Optics				
Diffractive Null Lenses	47			
Interferogram Lenses	48			
Toroidal and Helicoidal Planar Lenses	49			
Iterative Optimization Process	50			
Numerical Optimization	50			
Numeric Diffractives	51			
CGH Design Constraints	52			
Merit Function Definition				
IFTA Algorithm	54			
Direct Binary Search				
Simulated Annealing				
Beam-Shaping CGHs (Numeric)				
Spot Array Generators				
MLAs and Multifocus Lenses	59			
Dammann Gratings	60			
Talbot Self-Imaging	61			
From Micro-Optics to Nano-Optics	62			
Subwavelength Optics	62			
Large- and Small-Period Gratings	63			
Zero-Order Gratings	64			
Rigorous EM Diffraction Theory	65			
Effective Medium Theory	66			
EMT Encoding Schemes	67			
Form Birefringence	68			
Antireflection Microstructures	69			
Anthenection microstructures	09			

Field Guide to Digital Micro Optics

Parity-Time Symmetry in Optics	70
PT Grating-Assisted Couplers	71
Nonreciprocal Free-Space PT Gratings	72
Surface Plasmonics	73
Photonic Crystals	74
Metamaterials	75
Metasurfaces and Resonant Antennas	76
Holographic Micro-Optics	77
The Holographic Process	77
Gabor and Leith Holograms	78
Thin and Thick Holograms	79
Reflection and Transmission Holograms	80
Fraunhofer and Fresnel Holograms	81
Holographic Interference	82
The Grating Vector	83
Floquet's Theorem and the Bragg Conditions	84
Grating Strength and Detuning Factor	85
Kogelnik Theory for Volume Holograms	86
Angular and Spectral Bandwidths in Holograms	87
Two-Step Holographic Recording	88
Surface-Relief Holograms	89
Holographic Recording Media: Applications	90
Holographic Recording Media: Advantages and	
Drawbacks	91
Dynamic Micro-Optics	92
Dynamic Micro-Optics	92
Liquid-Crystal Optics	93
Liquid-Crystal Micro-Displays	94
OLED Micro-Displays	95
Quantum-Dot Displays	96
H-PDLC Switchable Hologram	97
H-PDLC Recording and Playback	98
MEMS/MOEMS Micro-Optics	99
MEMS Gratings	100
MEMS Display Panels	101
MEMS Laser Scanners	102

Holographic Backlights and Displays	103	
Tunable Moiré Micro-Optics		
Liquid Micro-Optics	105	
Electroactive Polymer Microlenses	106	
Micro-Optics Modeling Techniques	107	
Diffraction Modeling Theories	107	
Ray Tracing through Diffractives	107	
Fresnel and Fourier Approximations	100	
Near- and Far-Field Regions	110	
FFT-Based Physical Optics Propagators	111	
Oversampling Process in CGH Modeling	112	
Physical Optics Modeling: Resolution Increase	112	
Physical Optics Modeling with FFT Algorithms	114	
Replication of CGHs	115	
Numerical-Reconstruction Windows	116	
Numerical-Reconstruction Windows Scaling	117	
DFT-Based Propagators	118	
Fresnel Propagator Using a DFT	119	
Arbitrary-Reconstruction Windows	120	
DFT-Based Numerical Propagator	121	
Physical Optics versus Ray Tracing	122	
Micro-Optics Fabrication	123	
Fabrication Timeline of Micro-Optics	123	
Holographic Exposure and Etching	124	
Multiple Holographic Exposures	125	
Refractive Micro-Optics Fabrication	126	
Sag Calculations for microlenses	127	
Diamond Ruling/Turning	128	
Binary Lithography	129	
Multilevel Optical Lithography	130	
Etch Depth: Critical Distance and Groove Depth	131	
Etch Depth: Single-Step Height and Diffraction		
Efficiency	132	
Multilevel Lithographic Fabrication	133	
GDSII Mask Layouts	134	
Wafers for Micro-Optics	135	

Field Guide to Digital Micro Optics

Optical Lithography	136
Step-and-Repeat Lithography	137
Useful Lithography Parameters	138
Direct-Write Lithography	139
Greyscale Masking Techniques	140
Greyscale Lithography (Binary)	141
Greyscale Lithography (HEBS)	142
Photomask Patterning	143
Optical Proximity Correction	144
Replication Shim	145
Shim Recombination	146
Plastic Replication Technologies	147
Roll-to-Roll UV Embossing	148
Plastics: Acrylic and Polycarbonate	149
Plastics: Polystyrene and Cyclic Olefin Copolymer	150
Plastics: Cyclic Olefin Polymer and Ultem 1010	151
Effects of Fabrication Errors	152
Micro-Optics in Industry	153
Applications of Micro-Optics	154
Equation Summary	155
Bibliography	162
Index	173

Glossary

AMOT ED	A stine metain encode light southting 1' 1
AMOLED ARS	Active-matrix organic light-emitting diode Antireflection surface
CD	Critical dimension
CGH	Computer-generated hologram Caltech Intermediate Format
CIF	
DBS	Direct binary search
DEAP	Dielectric electroactive polymer
DFT	Discrete Fourier transform
DOE DOF	Diffractive optical element
	Depth of focus
DTM	Diamond turning machine
DWDM	Dense wavelength division multiplexing
EAP	Electroactive polymer
EDA	Electronic design automation
EDOF	Extended depth of focus
EMT	Effective medium theory
FDTD FFT	Finite-difference time domain Fast Fourier transform
FLCOS	Ferroelectric liquid crystal on silicon
FZP	Fresnel zone plate
GDSII	Graphic Data System II
GRIN	Gradient index
HEBS	High-energy beam sensitive
HMD	Head-mounted display
HOE	Holographic optical element
H-PDLC IC	Holographic-polymer dispersed liquid crystal
IFTA	Integrated circuit
	Iterative Fourier transform algorithm
IL ITO	Insertion loss Indium tin oxide
LAF	
LAF	Light-absorbing film
LCOS	Liquid crystal
LCOS LGA	Liquid crystal on silicon
M-DOE	Local grating approximation Moiré diffractive optical element
MEMS	Micro-electro-mechanical system
MLA	Microlens array
MOEMS	Microlens array Micro-opto-electro-mechanical system
NA	Numerical aperture
INA	numerical aperture

Glossary	
OLED	Organic light-emitting diode
OPC	Optical proximity correction
OPD	Optical path difference
OPU	Optical pick-up unit
PBS	Polarization beamsplitter
PC	Photonic crystal
PDLC	Polymer dispersed liquid crystal
PDM	Pulse-density modulation
PLC	Planar lightwave circuit
\mathbf{PSF}	Point spread function
\mathbf{PSM}	Phase-shift mask
PT	Parity time
PWM	Pulsewidth modulation
RCWA	Rigorous coupled-wave analysis
RET	Resolution enhancement technique
RIE	Reactive ion etching
SA	Simulated annealing
SBWP	Space–bandwidth product
SPDT	Single-point diamond turning
TIR	Total internal reflection
VHDL	Very-high-speed-integrated-circuit hardware
	description language
VLSI	Very-large-scale integration

Glossary