Field Guide to Astronomical Instrumentation

Christoph U. Keller Ramon Navarro Bernhard R. Brandl

> SPIE Field Guides Volume FG32

John E. Greivenkamp, Series Editor

SPIE PRESS Bellingham, Washington USA Library of Congress Preassigned Control Number Data

Keller, Christoph U.

Field guide to astronomical instrumentation / Christoph Keller, Ramon Navarro, Bernhard Brandl. pages cm. – (The field guide series ; FG32)
Includes bibliographical references and index.
ISBN 978-1-62841-177-5 (alk. paper)
1. Astronomical instruments-Handbooks, manuals, etc. I. Navarro, Ramón II. Brandl, Bernhard R. III. Society of Photo-optical Instrumentation Engineers. IV. Title.
QB86.K45 2014
522'.87-dc23

2014009876

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: 360.676.3290 Fax: 360.647.1445 Email: Books@spie.org www.spie.org

Copyright © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing.

Introduction to the Series

Welcome to the SPIE Field Guides—a series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The SPIE Field Guides are intended to be living documents. The modular page-based presentation format allows them to be updated and expanded. We are interested in your suggestions for new Field Guide topics as well as what material should be added to an individual volume to make these Field Guides more useful to you. Please contact us at fieldguides@SPIE.org.

> John E. Greivenkamp, *Series Editor* College of Optical Sciences The University of Arizona

Keep information at your fingertips with the SPIE Field Guides:

Adaptive Optics, Second Edition, Robert Tyson & Benjamin Frazier Atmospheric Optics, Larry Andrews Binoculars and Scopes, Paul Yoder, Jr. & Daniel Vukobratovich Diffractive Optics, Yakov Soskind Digital Micro-Optics, Bernard Kress Displacement Measuring Interferometry, Jonathan D. Ellis Fiber Optic Sensors, William Spillman, Jr. & Eric Udd Geometrical Optics, John Greivenkamp Holography, Pierre-Alexandre Blanche Illumination, Angelo Arecchi, Tahar Messadi, & John Koshel Image Processing, Khan M. Iftekharuddin & Abdul Awwal Infrared Systems. Detectors. and FPAs. 2nd Edition. Arnold Daniels Interferometric Optical Testing, Eric Goodwin & Jim Wyant Laser Pulse Generation, Rüdiger Paschotta Lasers, Rüdiger Paschotta Lens Design, Julie Bentley & Craig Olson Lidar. Paul McManamon Linear Systems in Optics, J. Scott Tyo & Andrey Alenin *Microscopy*, Tomasz Tkaczyk Nonlinear Optics, Peter Powers Optical Fabrication, Ray Williamson Optical Fiber Technology, Rüdiger Paschotta *Optical Lithography*, Chris Mack **Optical Thin Films**, Ronald Willey Optomechanical Design and Analysis, Katie Schwertz & James Burge *Physical Optics*, Daniel Smith Polarization, Edward Collett Probability, Random Processes, and Random Data Analysis, Larry C. Andrews & Ronald L. Phillips Radiometry, Barbara Grant Special Functions for Engineers, Larry Andrews Spectroscopy. David Ball Terahertz Sources, Detectors, and Optics, Créidhe O'Sullivan & J. Anthony Murphy Visual and Ophthalmic Optics, Jim Schwiegerling

Field Guide to Astronomical Instrumentation

This *Field Guide to Astronomical Instrumentation* is the one book that the three of us would want to carry with us if we had to single-handedly design an astronomical instrument on a remote mountain top. To keep it concise, it focuses on the ultraviolet to infrared wavelength range. The *Field Guide* is not intended to serve as a textbook, but as a handy desktop reference to be found in the labs and offices of instrument builders.

This book contains information on a wide range of topics, from fundamental physics to project management, and from technical concepts to material properties. Only the most important concepts and equations are presented here. In many areas, dedicated SPIE *Field Guides* discuss particular topics in much more detail. While we tried to maintain consistency with other volumes in this series, we wrote this *Field Guide* in the language that instrumental astronomers use, which might sometimes look strange to people working in other areas.

A *Field Guide* that strives to cover such a wide variety of topics will naturally overlook some potentially relevant topics. We look forward to suggestions from our readers on how to improve this *Field Guide* for its next edition.

Last but not least, we greatly appreciate the continuous support of our families in this endeavor.

Christoph U. Keller

Leiden Observatory, Leiden University, The Netherlands

Ramon Navarro

NOVA Optical & Infrared Instrumentation Division at ASTRON, The Netherlands

Bernhard R. Brandl

Leiden Observatory, Leiden University, The Netherlands

Glossary of Symbols and Acronyms	xi
General Optics	1
Refraction, Reflection, and Transmission	1
Polarization	2
Brewster Angle and Total Internal Reflection	3
Images, Pupils, and Beams	4
Aberrations	5
Diffraction	6
Point-Spread Function	7
Modulation Transfer Function	8
Spectral Transfer Function	9
Optical Elements	10
Windows	10
Lenses	11
Mirrors	12
Filters	13
Colored Glass Filters	14
Interference Filters	15
Coatings	16
Astronomical Bandpass Filters	17
Prisms	18
Gratings	19
Polarizers	20
Crystal Polarizers	21
Waveplates	22
Optical Fibers	23
Detectors	24
Detector Overview	24
Intrinsic Photoconductors	25
CCD and CMOS Detectors	26
Extrinsic and Stressed Photoconductors	27
BIB Detectors and (Avalanche) Photodiodes	28
Bolometers	29
Coherent (Heterodyne) Detectors	30
CCD and CMOS Readouts	31
Infrared Array Readouts	32

Table of Contents

Detector Noise and Artifacts	33
Detector Radiation Effects in Space	34
Detector Flat Fielding	35
Telescopes and Imagers	36
Telescopes	36
Correctors and Wide-Field Imagers	37
Focal Reducers	38
Reimaging Optics	39
High-Resolution Imagers	40
Spectrographs	41
Spectrograph Overview	41
Single-Slit Spectrometer	42
Echelle Spectrometers	43
Slitless Spectrometers	44
Fabry–Pérot Interferometer	45
Fourier Transform Spectrometer	46
Integral Field Spectrometer	47
Multi-object Spectrometer	48
OH-Suppression Spectrographs	49
Spectral Data Analysis	50
Polarimeters	51
Rotating Waveplate Polarimeters	51
Liquid Crystal Polarimeters	52
Spectral Modulation Polarimeters	53
Interferometers	54
Interferometer Principle and Angular Resolution	54
Delay Lines	55
Beam Combiners	56
Fringe Visibility	57
Fringe Tracking and Closure Phase	58
Aperture Synthesis and (u, v) Plane	59
Field of View and Sensitivity	60
Image Processing	61

Table of Contents

Coronagraphs	62
Focal-Plane Coronagraphs	62
Pupil-Plane Coronagraphs	63
Space Coronagraphs	64
Adaptive Optics	65
Adaptive Optics	65
Atmospheric Turbulence: Seeing	66
Wavefront Sensors	67
Deformable Mirrors	68
Adaptive Optics Control	69
Laser Guide Stars	70
Operation Modes	71
Optical Design	72
Optical Design Principles	72
Design Approach	73
Ray Tracing	74
Optimization	75
Tolerance Analysis	76
Stray Light Control and Baffles	77
Ontomechanics	78
Packaging	78
Ontics Mounts	70
Mechanisms	80
Actuators and Motors	81
Sensors	82
Mechanical Engineering for Space	83
Vacuum and Cryogenics	84
Dewars	84
Cooling Methods	85
Thermal Models	86
Thermal Effects in Space	87
Software and Electronics	88
Control	88
Instrument Control System	89

Field Guide to Astronomical Instrumentation

Table of Contents

Data Handling	90
Data Transfer from Space	91
Data Analysis Overview	92
Electronics: Cabling	93
Shielding	94
Systems Engineering	95
Systems Engineering: Requirements Definition	95
Block Diagrams	96
Interface Control	97
Error Budgets	98
Noise and its Distribution	99
Signal-to-Noise Ratio	100
Instrument Sensitivity and Integration Time	101
Signal Sampling	102
Project Management	103
Technology Development	104
Risk Management	105
Quality Management	106
Manufacturing, Assembly, Integration, and	
Testing	107
Optics Manufacturing	107
Optics Testing	108
Alignment	109
Instrument Commissioning	110
Operations and Maintenance	111
Appendices	112
Optical Material Properties	112
Mirror Substrate Material Properties	113
Mechanical Material Properties	114
Material Selection	115
ISO 10110 Ontical Drawing Standard	116
ECSS	117
Equation Summary	118
Bibliography	125
Index	127

Field Guide to Astronomical Instrumentation

1D, 2D, 3D	One-, two-, or three-dimensional system
4QPM	Four-quadrant phase mask
A	Absorption
Α	Surface area
Α	Telescope aperture
A(u, v)	Amplitude of aperture function
AC	Alternating current
ADC	Analog-to-digital converter
ADC	Atmospheric dispersion corrector
AG	Aplanatic Gregorian
AIT	Assembly, integration, and testing
AIV	Assembly, integration, and verification
AO	Adaptive optics
APD	Apodizing phase plate
APP	Avalanche photodiode
AR	Anti-reflection
В	Baseline of an interferometer
В	Bias frame
BIB	Blocked-impurity-band (detectors)
BLIP	Background-limited performance
BS	Beamsplitter
CC	Closed cycle cooler
CCD	Charge-coupled device
CMOS	Complementary metal-oxide
	semiconductor
CNC	Computer numerical control
CP	Closure phase
CTE	Charge transfer efficiency
CTE	Coefficient of thermal expansion
CWL	Center wavelength
d	Actuator spacing
D	Dark frame
d	Diameter
D	Diameter
$\frac{1}{d}$	Distance
d	Grating groove spacing
d	Lens thickness
D	Telescope diameter
DC	Direct current

DHS	Data handling system
DQE	Detective quantum efficiency
DSN	Deen snace network
E	Electrical field
	Energy
ρ	Error signal
0	Jones vector
FCSS	Furgean Cooperation for Space
LODD	Standardization
F	Bandgan onorgy
	Extremely Large Telescope
	Extremely Large Telescope
	Electromagnetic compatibility
	Electromagnetic interference
ESA	European Space Agency
ESU	European Southern Observatory
ETC	Exposure time calculator
F	Finesse
F	Flat-field frame
F'	Flux
f	Focal length
F	Focal ratio, f-number
f	Frequency
F	Fresnel number
${F}_{1 ightarrow 2}$	View factor
FDR	Final design review
FEM	Finite element model
FFBD	Functional Flow Block Diagram
f _G	Greenwood frequency
FLC	Ferro-electric liquid crystals
FSR	Free spectral range
FTS	Fourier transform spectrometer
FWHM	Full width at half maximum
g	Gain
G	Strehl ratio gain
gn	Derivative gain in a PID controller
gi	Integral gain in a PID controller
g _P	Proportional gain in a PID controller
GLAO	Ground-layer adaptive optics
gP	Proportional gain in a PID controller
0	1 0

GR	Generation-recombination
h	Height of turbulence layer
Н	Near-IR atmospheric band
HEB	Hot electron bolometer
HGA	High-gain antenna
Ι	Image
Ι	Intensity
IBF	Ion beam figuring
ICD	Interface control document
ICS	Instrument control system
In	Dirty image
IFS	Integral field spectrometer
IFU	Integral field unit
IR	Infrared
IRR	Integration readiness review
J	Jones matrix
.1	Near-IR atmospheric hand
	Zeroth-order Bessel function
J.	First-order Bessel function
JWST	James Webb Space Telescope
k	Angular frequency
K	Conic constant
K	Near-IR atmospheric band
K	Temperature in Kelvin
k	Wave number
k.	Normalized angular frequency
L	Grating width
	Maximum nath length difference
L2	Second Lagrangian point
LCVR	Liquid crystal variable retarders
LGS	Laser guide star
LHe	Liquid helium
LN_{2}	Liquid nitrogen
LO	Local oscillator
LSST	Large Synoptic Survey Telescope
LVDT	Linear variable differential transformer
m	Grating order, order of diffraction
М	Mueller matrix
mbar	Millibar pressure
	T

MCAO	Multi-conjugate adaptive optics
MEMS	Micro-electro-mechanical system
MKID	Microwave kinetic inductance detector
MLI	Multi-layer isolation
MOAO	Multi-object adaptive optics
MOS	Multi-object spectrometer
MTF	Modulation transfer function
n	Index of refraction
n	Noise
N	Number of actuators
N	Number of illuminated grooves
n	Number of photons
N	Number of telescopes
NA	Numerical aperture
NASA	National Aeronautics and Space
	Administration
n_{off}	Effective index of refraction
NGS	Natural guide star
n_m	Index of refraction of medium
n_n	number of photons per m ²
n_s^p	Index of refraction of substrate
0	Object
OCS	Observatory control system
OPD	Optical path difference
OTCCD	Orthogonal-transfer CCD
OTF	Optical transfer function
Р	Degree of polarization
р	Point spread function
P	Poke matrix
P	Pressure
P(v)	Instrumental profile
$P(x,\mu)$	Probability for value x around a mean μ
PDR	Preliminary design review
PEM	Piezo-elastic modulator
PIAA	Phase-induced amplitude apodization
PID	Proportional-integral-derivative
P_L	Degree of linear polarization
\overline{PS}	Point source (diffraction limited)
PSF	Point spread function

Pt100, Pt1000	Platinum temperature sensor
PTF	Phase transfer function
PVA	Polyvinyl alcohol
Q	Heat transfer
\hat{Q}	Stokes Q
QA	Quality assurance
QC	Quality control
QMS	Quality management system
r	Radial distance
R	Radius of curvature
R	Reconstructor
R	Reflectivity
R	Spectral resolution
R&D	Research and development
r_0	Fried's parameter
RAM	Risk assessment matrix
RAMS	Risk assessment and method statement
RC	Ritchey–Chrétien (telescope)
RFI	Radio frequency interference
RMS	Root mean square
ROI	Region of interest
r_p	Reflection amplitude for p-polarization
r_s	Reflection amplitude for s-polarization
RVDT	Rotary variable differential transformer
R_X, R_Y, R_Z	Rotation around X, Y, Z coordinates
S	Science frame
8	Sensor data
S	Signal
s	Stokes vector
SH	Shack–Hartmann wavefront sensor
Si	Silicon
SIS	Superconductor-insulator-superconductor
SL	Seeing limited
SNR	Signal-to-noise ratio
STEP	Standard for exchange of product data
STF	Spectral transfer function
SUR	Sample-up-the-ramp
T	Temperature
t	Thickness

t	Time
T	Transmission
T1, T2	Telescopes
TCS	Telescope control system
t_D	Dark frame exposure time
TDRSS	Tracking and data relay satellite system
TES	Transition edge sensor
t_F	Flat-field frame exposure time
TIR	Total internal reflection
TIS	Total integrated scatter
TLR	Top-level requirements
TMA	Three-mirror anastigmat
t_p	Transmission amplitude for <i>p</i> -polarization
ŤRL	Technology readiness level
t_S	Science frame exposure time
$\tilde{t_s}$	Transmission amplitude for s-polarization
T_X, T_Y, T_Z	Translation in X, Y, Z coordinates
u	Control signal
(u, v)	Coordinates in Fourier space
U	Stokes U
UV	Ultraviolet
V	Fringe visibility
V	Stokes V
υ	Wind speed
VPH	Volume phase hologram
W	Watt
WBS	Work breakdown structure
WFS	Wavefront sensor
W_i	Weighting coefficient
x	Path-length difference
X, Y, Z	X, Y, Z coordinates
у	Actuator position
у	Distance from field center
Y	Yield strength
z	Surface zag
z	Zenith angle
α	Linear polarization orientation
α	Absorption coefficient
α	Prism apex angle

α	Incident angle on grating
β	Reflected angle on grating
γ	Groove center to edge phase difference
δ	Phase change on total internal reflection
δ	Retardation in birefringent material
δ	Dispersion angle
δ	Angle of linear polarization
Δ	OPD in an interferometer
$\Delta \lambda_{FWHM}$	Filter transmission profile FWHM
$\Delta\lambda$	Spectral resolution element
ϵ	Emissivity
η	Relative grating efficiency
η	Throughput
θ	Half-angle
θ	Position or rotation angle
θ	Angular resolution in radians
θ_B	Brewster angle
θ_B	Blaze angle
θ_i	Angle of incidence
θ'_i	Refracted angle of incidence
$\theta_{isoplanatic}$	Isoplanatic angle
θ_o	Angle of dispersed beam
θ_r	Angle of reflected beam
θ_t	Angle of transmitted beam
λ	Wavelength
λ_B	Blaze wavelength
λ_c	Center wavelength
λ_c	Cutoff wavelength
λ_{fsr}	Free spectral range
μm	micrometer
ν	Frequency
σ	Stefan Boltzmann constant
σ	Standard deviation
$\sigma^2_{control}$	Control system lag induced variance
σ_{DM}^2	Fitting error induced variance
$\sigma_{offaris}^{2}$	Anisoplanatism wavefront variance
σ_{total}^2	Total wavefront variance
σ^2_{WES}	Wavefront sensor induced variance
τ	Internal transmission

τ	Frequency in Nyquist sampling
τ_i	Internal transmission
τ_s	Servo lag time
$ au_0$	Atmospheric coherence time
ϕ_0	Intrinsic phase
ϕ_{obs}	Observed phase
ϕ_{atmos}	Phase shifted by atmospheric effects
ϕ_s	Angular slit width
$\varphi(u, v)$	Phase of aperture function
φ	Wedge angle
ω	Angular frequency