References


References


References


References


References


References


absorptance, 27
absorption, 26, 27
accuracy, 15
analyte, 3
antiresonant reflecting optical waveguide (ARROW), 72
attenuated total reflection (ATR) spectroscopy, 53
Beer–Lambert law, 36
diffuse reflection, 26
disposable colorimetric test, 90
dynamic range (DR), 18, 19
electrochemiluminescence, 31
electroluminescence, 31
efficiency monitoring, 94
enzyme electrode, 7
fluorescence, 33
fluorescence biosensor, 46
fluorescence polarization (FP), 35, 47
full-scale range (FSR), 18
Hartmann interferometer, 68
hollow waveguide, 73
homogeneous sensing, 64
imaging ellipsometry, 44
immobilization, 10
infrared (IR) spectroscopy, 37
infrared spectroscopy (FTIR), 37
immunoassay, 80
integrated microfluidic biosensor, 77
interferometric biosensor, 42
immunoassays, 80
enzyme electrode, 7
fluorescence, 33
fluorescence biosensor, 46
fluorescence polarization (FP), 35, 47
full-scale range (FSR), 18
Hartmann interferometer, 68
hollow waveguide, 73
homogeneous sensing, 64
immobilization, 10
infrared (IR) spectroscopy, 37
immunoassay, 80
integrated microfluidic biosensor, 77
interferometric biosensor, 42
immunoassays, 80
Index

Interferometric Reflectance Imaging Sensor (IRIS), 42
intrinsic sensor, 54
irreversibility, 22
lab on a chip (LOC), 78
label-free detection, 36
lateral flow test, 4
linearity, 23
localized surface plasmon resonance (LSPR), 30
luminescence, 31
Mach–Zehnder interferometer, 66
measurand range, 18
mechanoluminescence, 31
micro total analysis system (μTAS), 78
microfluidics, 77
Mie scattering, 39
minimum detectable signal (MDS), 20
near-field scanning optical microscopy (NSOM), 55
offset, 23
optical biosensor, 6
optical heterodyne detection (OHD), 59
optical path length (OPL), 28
optical phase difference (OPD), 28
optically active substance, 60
optoacoustic spectroscopy, 61
overload, 23
overrange, 23
phase-sensitive detection, 58
phosphorescence, 34, 48
photoacoustic spectroscopy (PAS), 61
photoluminescence, 31, 32
photonic band gap (PBG), 45
photonic crystal (PhC), 45, 74
piezoluminescence, 31
plasma oscillations, 30
plasmon, 30
point of care (POC), 1
point-of-care testing (POCT), 43, 80
polarimetry, 60
polarization, 29, 35
precision, 15
radioluminescence, 31
Raman spectroscopy, 62
random errors, 24
Rayleigh–Gans–Debye scattering, 39
Rayleigh scattering, 39, 40
recovery time, 21
reflectance, 26, 41
reflection, 26
reflectometric interference spectroscopy (RIfS), 41
repeatability, 16
reproducibility, 16
resolution, 22
resonance light scattering (RLS), 40
resonance Rayleigh scattering (RRS), 40
resonant optical microcavity, 75
resonant waveguide grating (RWG), 71
response time, 21
saturation, 20
scattering, 26, 27
scattering detection, 39
selectivity, 16
sensitivity, 17
sensor time constant, 21
single-wavelength ellipsometry, 44
specificity, 16
spectroscopic ellipsometry, 44
specular reflection, 26
stability, 21
steady-state response time, 21
stretching, 37
surface-enhanced Raman scattering (SERS), 30
surface-enhanced Raman spectroscopy (SERS), 63
surface functionalization, 10
surface plasmon resonance (SPR), 43, 56
surface sensing, 64
systematic errors, 24
terminal-based linearity, 23
threshold, 22
time-resolved fluorescence (TRF), 51
total internal reflection (TIR), 52
transducer, 2, 3
transmission, 26, 27
transmittance, 27, 41
triboluminescence, 31
triplet excited state, 34
true value, 15
waveguide, 64
waveguide interferometer architecture, 65
weapons of mass destruction (WMDs), 90
wearable biosensor, 95
whispering-gallery modes, 75
white light reflectance spectroscopy (WLRS), 42
Young interferometer, 67
Raúl J. Martín-Palma is a professor of physics in the Department of Applied Physics at the Universidad Autónoma de Madrid and an adjunct professor of materials science and engineering at Pennsylvania State University. He received his M.S. in applied physics in 1995 and his Ph.D. in physics in 2000, both from the Universidad Autónoma de Madrid. He has been a post-doctoral fellow at the New Jersey Institute of Technology. He has received several awards for his research on nanoscience and nanotechnology from the Materials Research Society, European Materials Research Society, and Spanish Society of Materials. He is a Fellow of SPIE and serves as an associate editor of the *Journal of Nanophotonics*. 