Contrast Sensitivity of the HUMAN EYE and Its Effects on Image Quality

Contrast Sensitivity of the HUMAN EYE and Its Effects on Image Quality

Peter G. J. Barten

SPIE OPTICAL ENGINEERING PRESS A Publication of SPIE—The International Society for Optical Engineering Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Barten, Peter G. J.
Contrast sensitivity of the human eye and its effects on image quality / Peter G. J. Barten.
p. cm.
Originally published: Knegsel : HV Press, 1999.
Thesis (doctoral) — Technische Universiteit Eindhoven, 1999.
Includes bibliographical references and index.
ISBN 0-8194-3496-5 (hardcover)
1. Contrast sensitivity (Vision). 2. Contrast sensitivity (Vision) — Mathematical Models.
I. Title.
QP481.B245 1999
612.8'4—dc21
99-40877
CIP

Published by

SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 Phone: 360/676-3290 Fax: 360/647-1445 Email: spie@spie.org WWW: http://www.spie.org/

Copyright © 1999 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

Printed in the United States of America.

to my wife Tineke, and my children Koen, Yvonne and Marianne

Contents

Pref	ace		xiii
List	of sym	bols	xv
1	Intro	duction	1
	Refer	rences	5
2	Mod	ulation threshold and noise	7
	2.1	Introduction	7
	2.2	Psychometric function	8
	2.3	Basic properties of image noise	16
	2.4	Effect of noise on modulation threshold	19
	2.5	Summary and conclusions	22
	Refe	rences	23
3	Mod	el for the spatial contrast sensitivity of the eye	27
	3.1	Introduction	27
	3.2	Outline of the model	28
	3.3	Optical MTF	29
	3.4	Photon noise	31
	3.5	Neural noise	34
	3.6	Lateral inhibition	34
	3.7	Monocular vision versus binocular vision	38

3.8	Comple	ete model	38
3.9	Compa	rison with measurements	40
	3.9.1	Measurements by DePalma and Lowry	41
	3.9.2	Measurements by Patel	42
	3.9.3	Measurements by Robson	43
	3.9.4	Measurements by van Nes and Bouman	43
	3.9.5	Measurements by Campbell and Robson	46
	3.9.6	Measurements by Watanabe et al	47
	3.9.7	Measurements by Sachs et al.	48
	3.9.8	Measurements by van Meeteren and Vos	50
	3.9.9	Measurements by Howell and Hess	51
	3.9.10	Measurements by Virsu and Rovamo	52
	3.9.11	Measurements by Carlson	53
	3.9.12	Measurements by Rovamo et al. (1992)	55
	3.9.13	Measurements by Rovamo et al. (1993a)	56
	3.9.14	Measurements by Rovamo et al. (1993b)	57
	3.9.15	Survey of the measurements.	59
3.10	Summa	ary and conclusions	60
Аррен	ndix A.	Photon conversion factor	60
Refere	ences		63
Exter	nsion of	the contrast sensitivity model to extra-foveal vision	67
4 . l	Introdu	action	67
4.2	Density	y distribution of retinal cells	68
	4.2.1	Geometrical relations	68
	4.2.2	Cone density distribution	69
	4.2.3	Rod density distribution	71
	4.2.4	Ganglion cell density distribution	72
4.3	Effect of	of eccentricity on the different constants used in the model	75
	3.8 3.9 3.10 Apper Refere 4.1 4.2 4.3	3.8Complete 3.9 Compare $3.9.1$ $3.9.1$ $3.9.2$ $3.9.3$ $3.9.4$ $3.9.5$ $3.9.4$ $3.9.5$ $3.9.6$ $3.9.7$ $3.9.8$ $3.9.9$ $3.9.10$ $3.9.10$ $3.9.12$ $3.9.13$ $3.9.13$ $3.9.14$ $3.9.13$ $3.9.14$ $3.9.13$ $3.9.14$ $3.9.13$ $3.9.14$ $3.9.13$ $3.9.14$ $3.9.13$ $3.9.14$ $3.9.13$ $3.9.14$ $3.9.13$ $3.9.14$ $3.9.14$ $3.9.15$ 3.10 SummaAppendix A.ReferencesExtension of 4.1 Introduct 4.2 Density $4.2.1$ $4.2.2$ $4.2.3$ $4.2.4$ 4.3 Effect of	3.8 Complete model 3.9 Comparison with measurements 3.9.1 Measurements by DePalma and Lowry 3.9.2 Measurements by Patel 3.9.3 Measurements by Robson 3.9.4 Measurements by Vaten Nes and Bouman 3.9.5 Measurements by Campbell and Robson 3.9.6 Measurements by Watanabe et al. 3.9.7 Measurements by Watanabe et al. 3.9.8 Measurements by Van Meeteren and Vos. 3.9.9 Measurements by Howell and Hess 3.9.10 Measurements by Virsu and Rovamo 3.9.11 Measurements by Carlson 3.9.12 Measurements by Rovamo et al. (1992) 3.9.13 Measurements by Rovamo et al. (1993a) 3.9.14 Measurements. 3.10 Summary and conclusions Appendix A. Photon conversion factor References

4

		4.3.1	Effect of eccentricity on resolution	75
		4.3.2	Effect of eccentricity on neural noise	77
		4.3.3	Effect of eccentricity on lateral inhibition	78
		4.3.4	Effect of eccentricity on quantum efficiency	79
		4.3.5	Effect of eccentricity on the maximum integration area .	80
	4.4	Compa	rison with measurements	81
		4.4.1	Measurements by Virsu and Rovamo	82
		4.4.2	Measurements by Robson and Graham	84
		4.4.3	Measurements by Kelly	86
		4.4.4	Measurements by Mayer and Tyler	87
		4.4.5	Measurements by Johnston	88
		4.4.6	Measurements by Pointer and Hess	89
		4.4.7	Survey of the measurements	91
	4.5	Summ	ary and conclusions	92
	Refer	ences		93
_	~	. ,		~ ~
5	Exten	ision of	the contrast sensitivity model to the temporal domain	95
	5.1	Introd		95
	5.2	Genera	alization of the spatial contrast sensitivity model	96
	5.3	Tempo	oral filter functions	9 7
	5.4	Spatio	temporal contrast sensitivity measurements	98
	5.5	Tempo	oral contrast sensitivity measurements	102
	5.6	Effect	of a surrounding field	105
	5.7	Effect	of retinal illuminance and field size on the time constants .	106
	5.8	Flicker	sensitivity: Ferry-Porter law	114
	5.9	Tempo	oral impulse response	118
	5.10	Summ	ary and conclusions	120
	Refer	ences.		121

6	Effec	of nonwhite spatial noise on contrast sensitivity 125	
	6.1	Introduction	
	6.2	Model for the masking effect of nonwhite spatial noise 125	
	6.3	Measurements with narrow noise bands by Stromeyer and Julesz 128	
	6.4	Measurements with nonwhite noise by van Meeteren and Valeton 131	
	6.5	Summary and conclusions	
	Refe	nces	
7	Con	rast discrimination model 135	
	7.1	Introduction	
	7.2	Evaluation of the psychometric function	
	7.3	Evaluation of the contrast discrimination model	
	7.4	Comparison with contrast discrimination measurements 143	
	7.5	Generalized contrast discrimination model147	
	7.6	Summary and conclusions	
	Refe	ences	
8	Imag	e quality measure 153	
	8.1	Introduction	
	8.2	Nonlinear effect of modulation	
	8.3	Image quality metrics	
		8.3.1 Modulation transfer area (MTFA)159	
		8.3.2 Integrated contrast sensitivity (ICS) 159	i
		8.3.3 Subjective quality factor (SQF) 160	1
		8.3.4 Discriminable difference diagram (DDD) 160)
		8.3.5 Square-root integral (SQRI) 161	
	8.4	Two-dimensional aspects 162	,
	8.5	Functional analysis of image quality metrics	;
	8.6	Effect of differently shaped MTFs 169)
	8.7	Summary and conclusions	;

	Refere	ences	173
9	Effec	t of various parameters on image quality	175
	9.1	Introduction	175
	9.2	Resolution and image size	176
	9.3	Luminance and image size	178
	9.4	Anisotropic resolution	180
	9.5	Viewing distance, display size, and number of scan lines size	181
	9.6	Contrast	183
	9 .7	Gamma	185
	9.8	Noise	. 189
	9.9	Pixel density and luminance quantization	. 194
	9.10	Summary and conclusions	. 197
	Refer	ences	. 198
Epilo	ogue		201
Subj	ect ind	lex	203

Preface

In this book, a new model is given for the contrast sensitivity of the human eye with which a large number of published measurements can be explained. Furthermore, a metric is given for the calculation of the perceived quality of an image from the physical parameters of the image and the psychophysical parameters of the human visual system. The book represents the comprehensive results of about ten years of investigation in these areas. The contrast sensitivity model is based on the assumption that it is determined by the presence of internal noise in the visual system. First a fundamental mathematical analysis is given for the general properties of image noise and for the effects of noise on the perception threshold of the visual system. The effect of internal noise on contrast sensitivity is further elaborated in following chapters for various aspects of the visual system. The results are given in the form of equations that can easily be used for practical application. They are compared with a large number of empirical data. The last chapters of the book are devoted to the effect of contrast sensitivity on perceived image quality. In this part, a model is given for the nonlinear behavior of the visual system at suprathreshold levels of modulation and a metric is given for the description of image quality with the aid of the physical parameters of the imaging system and the psychophysical parameters that can be derived from the contrast sensitivity. In the last chapter, the effect of various parameters on image quality is treated, and several examples are given where the predicted image quality is compared with measurements.

The reason for the research on the subjects treated in this book, was the need for an objective measure of perceived image quality, which I felt during my professional work on the development of CRTs for television and computer display. It was clear that besides the physical data of the image, the contrast sensitivity of the eye plays an important role in such a measure. However, for the contrast sensitivity of the eye, which depends on luminance and field size, only a few measurements were available. Furthermore, it was not clear how the contrast sensitivity of the eye had to be combined with the physical parameters of the image to obtain a good measure for image quality. Therefore, I started an intensive study on these subjects after the end of my professional career. For the effect of resolution on image quality, I found that the nonlinear behavior of the visual system could be taken into account by applying a square-root relation between modulation and perceived image quality. Later it appeared that the so obtained image quality metric could not only be applied for the effect of resolution, but also for the effect of other parameters on image quality, like luminance and image size. For the effect of noise on image quality, I assumed that it was caused by the effect of noise on contrast sensitivity. To investigate this further, I made a study of published measurement data of the effect of various types of image noise on contrast sensitivity. After an evaluation of these results, the idea arose that the remarkable dependence of contrast sensitivity on luminance and field size could maybe be explained by the presence of internal noise in the visual system. However, to obtain a complete description of the contrast sensitivity function of the eye, still a number of additional assumptions had to be made. I tested these assumptions by comparing them with a large number of published data. Furthermore, I also tried to apply the same basic principles to other aspects of contrast sensitivity. The so obtained information appeared to be very useful for a further evaluation of a good image quality metric.

After having presented a part of my investigations in papers and in short courses, the idea arose to present the results more completely in a comprehensive book. For the first edition of this book, I chose the form of a dissertation at the Technical University of Eindhoven, because an important part of the measurements that I used for my investigations were made at the Institute of Perception Research (IPO) of this university. I was very glad that Prof. Roufs of this institute, who was in charge of the work on visual perception, was willing to act as supervisor of my dissertation. I am very grateful for the many hours he spent on reading the manuscript of the dissertation in a critical way and his suggestions for improvements. I am also very grateful for the support that I received during my investigations from Prof. van Nes of the same institute and from Dr. van Meeteren of the Institute for Perception TNO in Soesterberg. I also would like to thank Prof. Hooge and Prof. Butterweck of the Department of Electrical Engineering of the Technical University of Eindhoven for their advice on the mathematical treatment of the noise in Chapter 2, and I also would like to thank Dr. Tyler of the Smith-Kettlewell Eye Research Institute in San Francisco for his useful comments on Chapter 5 about the temporal contrast sensitivity. In particular, I would like to express my special thanks to my wife for her patience during the many hours that I spent on the manuscript of this book.

The present book is the textbook edition of the dissertation. It differs from the original version by the use of a hardcover, the addition of a subject index and a list of symbols, and by a few other changes and small text corrections that were made to adapt it to this application.

Peter Barten

August, 1999

List of symbols

Latin symbols

<u>Symbol</u> **Description** Unit cd/m² a(u,v,w)amplitude of sinusoidal luminance variation A available surface area per retinal cell deg² MTFA value cycles/deg A(u,v,w)complex amplitude of sinusoidal luminance variation cd/m² constant for nonlinear behavior of modulation С ----velocity of light m/sec velocity of traveling wave deg/sec Ccontrast factor ----- C_{ab} aberration constant of eye lens arc min/mm d diameter of eye pupil mm center-to-center distance of retinal cells arc min ď detectability index -----D field diameter deg e numerical value of the natural logarithm (2.771828...) ----e eccentricity deg e_g E constant used in density distribution of ganglion cells deg retinal illuminance Τd f(r)deg⁻² receptive field of spatial inhibition F(u)MTF of spatial inhibition filter **** integrand of one-dimensional image quality metric cond. dep. F(u,v)integrand of two-dimensional image quality metric cond. dep. $F(u, \vartheta)$ integrand of polar image quality metric cond. dep. F(u,v,w)Fourier transform of luminance pattern deg² sec cd/m² G(u,w)MTF of spatiotemporal inhibition process ----h Planck's constant Joule sec vertical size of television image deg h(t)temporal impulse response function msec⁻¹

Symbol Description

U	nit
_	

$h_1(t)$	impulse response function for MTF given by $H_1(w)$	msec ⁻¹
$h_2(t)$	impulse response function for MTF given by $H_2(w)$	msec ⁻¹
H(w)	MTF of temporal impulse response function	
$H_1(w)$	MTF of temporal processing of photo-receptor signal	
$H_2(w)$	MTF of temporal processing of spatial inhibition signal	
Ι	ICS value	cycles/deg
j	√-1	
j	flux density of photons	deg ⁻² sec ⁻¹
j(u)	image quality contribution	jnd
J	image quality measure	jnd
	SQRI value	jnd
ſ	modified SQRI value	jnd
k	signal-to-noise ratio at 50% detection probability	
k*	signal-to-noise ratio at det. prob. different from 50%	
K	Kell factor (0.7)	
Κ	normalization factor SQF metric	
1	relative threshold elevation	
L	luminance	cd/m ²
Ī	average luminance	cd/m ²
Ľ	output luminance	cd/m ²
L _{max}	maximum luminance	cd/m ²
ΔL	luminance difference	cd/m ²
m	modulation	
m_0	modulation of reference signal	*****
m	average modulation of noise wave components	
$m_{\rm rel}$	relative modulation of reference signal	
m _t	modulation threshold	
m_{t}	increased modulation threshold	
Δm	modulation difference	
Δm_{t}	threshold of modulation difference	*****
$\Delta m_{ m trel}$	relative threshold of modulation difference	
M(u)	MTF of imaging system	
$M_{\rm lat}(u)$	MTF of lateral inhibition process	
$M_{\rm opt}(u)$	optical MTF of the eye	
n	number of photons	
	number of stages of impulse response function	
\boldsymbol{n}_1	number of stages of the function $H_1(w)$	**
n ₂	number of stages of the function $H_2(w)$	
ñ	average number of photons	
Ν	number of retinal cells per unit area	deg ⁻²
N _c	number of cones per unit area	deg ⁻²

<u>Symbol</u>	Description	<u>Unit</u>
N _{c0}	number of cones per unit area in center of retina	deg ⁻²
N.	number of ganglion cells per unit area	deg ⁻²
N _m	number of ganglion cells per unit area in center of retina	deg ⁻²
N _{max}	maximum number of integration cycles	
N,	number of rods per unit area	deg ⁻²
N,	number of visual scan lines	
p	detection probability	%
•	photon conversion factor photon	s/sec/deg ² /Td
	center-to-center distance of pixels	deg
p_{2AFC}	probability of correct response in a 2AFC experiment	%
$P(\lambda)$	spectral energy distribution of light source	Joule/sec
Q	SQF value	
r	radial distance on retina	arc min
\$	signal strength	cond. dep.
	row spacing of retinal cells	arc min
<i>s</i> ₀	signal strength at 50% detection probability	cond. dep.
Sg	row spacing of ganglion cells	arc min
Š	contrast sensitivity	
t	time	sec
Δt	small variation of t	sec
Т	temporal size	sec
T _e	integration time of the eye	sec
T _o	presentation time	sec
u	spatial frequency	cycles/deg
	spatial frequency in x direction	cycles/deg
u ₀	spatial frequency limit of lateral inhibition process	cycles/deg
u _n	spatial frequency of the noise	cycles/deg
u _N	Nyquist limit of spatial frequency	cycles/deg
$u_{\rm max}$	maximum spatial frequency	cycles/deg
	maximum spatial frequency in x direction	cycles/deg
u_{\min}	minimum spatial frequency	cycles/deg
	minimum spatial frequency in x direction	cycles/deg
unmax	maximum spatial frequency of noise	cycles/deg
	maximum spatial frequency of noise in x direction	cycles/deg
u _{nmin}	minimum spatial frequency of noise	cycles/deg
	minimum spatial frequency of noise in x direction	cycles/deg
Δu	small variation of u	cycles/deg
Δu_n	small variation of u_n	cycles/deg
V	spatial frequency in y direction	cycles/deg
$v_{\rm max}$	maximum spatial frequency in y direction	cycles/deg
v_{\min}	minimum spatial frequency in y direction	cycles/deg

<u>Symbol</u>	Description	<u>Unit</u>
v_{nmax}	maximum spatial frequency of noise in y direction	cycles/deg
v_{nmin}	minimum spatial frequency of noise in y direction	cycles/deg
$V(\lambda)$	spectral sensitivity function for photopic light	
$V(\lambda)$	spectral sensitivity function for scotopic light	
W	temporal frequency	Hz
x	integration variable	cond. dep.
	spatial variable in x direction	deg
Δx	small variation of x	deg
X	spatial size in x direction	deg
X	object size in x direction	deg
X_{\max}	maximum integration area in x direction	deg
y	spatial variable in y direction	deg
Δy	small variation of y	deg
Ŷ	spatial size in y direction	deg
Y	object size in y direction	deg
Y _{max}	maximum integration area in y direction	deg
z	integration limit of normal probability integral	

Greek symbols

<u>Symbol</u>	Description	<u>Unit</u>
α	relative active time of displayed luminance	
	constant for signal threshold of Weibull function	cond. dep.
β	steepness constant of Weibull function	
γ	exponent of displayed luminance variation	
γo	optimum value of γ	
3	energy photon	Joule
η	quantum efficiency	%
Ð	polar angle	deg
λ	wave length of light	nm
ν	light frequency of photon	sec ⁻¹
π	numerical angle (3.1416)	
σ	standard deviation	cond. dep.
	standard deviation of optical line-spread function	arc min
σ_0	standard dev. opt. line-spread function at small pupil size	arc min
σ _{ret}	part of this stand. dev. caused by discrete structure retina	arc min
σ_{00}	remaining part of this standard deviation	arc min
σ _{hor}	standard deviation of blur in horizontal direction	arc min
$\sigma_{\rm vert}$	standard deviation of blur in vertical direction	arc min

Symbol Description

σ_{dia}	standard deviation of blur in diagonal direction	arc min
σ _m	standard deviation of the modulation	
σ _n	relative standard deviation of the noise	
σ,	relative standard deviation of the number of photons	
σ,	relative standard deviation of the luminance	******
τ	time constant of impulse response function	msec
τ	time constant of the function $H_1(w)$	msec
τ_{10}	value of τ_1 at low retinal illuminance and small field size	msec
τ_2	time constant of the function $H_2(w)$	msec
τ ₂₀	value of τ_2 at low retinal illuminance and small field size	msec
$\Phi(u,v,w)$	spectral density	deg ² sec
Φ_0	spectral density of neural noise	deg ² sec
Φ_{d}	spectral density of nonwhite noise	cond. dep.
Φ _	spectral density of white noise	cond. dep.
$\Phi_{nh}^{"}$	spectral density of photon noise	deg ² sec
$\Psi(u_{n},u)$	weighting function of masking	

Remark:

In equations, non-standard units of variables have to be adapted to the standard units m, sec, deg, etc., unless otherwise specified.

<u>Unit</u>