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FUNDAMENTALS 
OF PHOTONICS 

Module 
1.4 

Basic Physical Optics 
Leno S. Pedrotti 
CORD 
Waco, Texas 

In Module 1-3, Basic Geometrical Optics, we made use of light rays to demonstrate reflection 
and refraction of light and the imaging of light with mirrors and lenses. In this module, we shift 
the emphasis from light rays to light waves—from geometrical optics to physical optics. In so 
doing, we move from a concern over the propagation of light energy along straight-line 
segments to one that includes the spreading of light energy—a fundamental behavior of all 
wave motion. 

With wave optics—commonly referred to as physical optics—we are able to account for 
important phenomena such as interference, diffraction, and polarization. The study of these 
phenomena lays the foundation for an understanding of such devices and concepts as 
holograms, interferometers, thin-film interference, coatings for both antireflection (AR) and 
high reflection (HR), gratings, polarizers, quarter-wave plates, and laser beam divergence in the 
near and far field. 

Prerequisites 
Before you begin your study of this module, you should have completed a study of Module 1-1, 
Nature and Properties of Light, and Module 1-3, Basic Geometrical Optics. In addition, you 
should be able to use algebra, plane geometry, and trigonometry—especially the use and 
interpretation of the trigonometric functions (sin, cos, tan) as they relate to sides and angles in 
triangles. 
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Objectives 
When you finish this module you will be able to: 

• Describe a wave front. 

• Describe the relationship between light rays and wave fronts. 

• Define phase angle and its relationship to a wave front. 

• Calculate water wave displacement on a sinusoid-like waveform as a function of time 
and position. 

• Describe how electromagnetic waves are similar to and different from water waves. 

• State the principle of superposition and show how it is used to combine two overlapping 
waves. 

• State Huygens’ principle and show how it is used to predict the shape of succeeding 
wave fronts. 

• State the conditions required for producing interference patterns. 

• Define constructive and destructive interference. 

• Describe a laboratory setup to produce a double-slit interference pattern. 

• State the conditions for an automatic phase shift of 180° at an interface between two 
optical media. 

• Calculate the thickness of thin films designed to enhance or suppress reflected light. 

• Describe how multilayer stacks of quarter-wave films are used to enhance or suppress 
reflection over a desired wavelength region. 

• Describe how diffraction differs from interference. 

• Describe single-slit diffraction and calculate positions of the minima in the diffraction 
pattern. 

• Distinguish between Fraunhofer and Fresnel diffraction. 

• Sketch typical Fraunhofer diffraction patterns for a single slit, circular aperture, and 
rectangular aperture, and use equations to calculate beam spread and fringe locations. 

• Describe a transmission grating and calculate positions of different orders of diffraction. 

• Describe what is meant by diffraction-limited optics and describe the difference between 
a focal point in geometrical optics and a focal-point diffraction pattern in wave optics. 

• Describe how polarizers/analyzers are used with polarized light. 

• State the Law of Malus and explain how it is used to calculate intensity of polarized light 
passing through a polarizer with a tilted transmission axis. 

• Calculate Brewster’s angle of incidence for a given interface between two optical media. 

• Describe how Brewster windows are used in a laser cavity to produce a linearly 
polarized laser beam. 
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Scenario—Using Wave Optics in the Workplace 
Letitia works for an optical coating company that produces highly transmissive and 
highly reflecting optics. For the past several weeks she has been working on 
protective overcoats for metallic gold mirrors. The overcoats are made of multilayer 
dielectric stacks that preserve the required reflective properties of the mirrors while 
protecting the soft gold surface from scratches and digs. Letitia remembers her 
work in wave optics at school, where she learned about quarter-wave plates, AR 
and HR coats, and surface properties of metallic reflectors. She is both pleased 
and surprised at how much she remembers about light interference in thin films and 
how much more interesting this makes her work. Today she is working in the 
coating lab with other technicians, preparing a multilayer dielectric quarter-wave 
stack, made up of alternate layers of high- and low-index-of-refraction materials to 
enhance the reflection of light near 550 nm. Letitia knows that her time in school 
prepared her to understand the principles of wave optics and also to learn valuable 
hands-on skills in the laboratory. She feels that she is becoming a “coating” expert. 

Opening Demonstrations 
Note: The hands-on exercises that follow are to be used as short, introductory laboratory 
demonstrations. They are intended to provide you with a glimpse of several phenomena that are 
dependent on wave optics and stimulate your interest in the study of optics and photonics 

1.  Shining White Light Through a Comb.  In an appropriately darkened room, shine light 
from a focusable mini Mag-Lite (Mag Instrument, Ontario, California, 909-947-1006) through 
the narrowly spaced teeth of an ordinary comb. Mount the Mag-Lite and comb firmly on an 
optical bench with appropriate holders. Examine the light pattern on a white screen, securely 
mounted several feet from the comb. See sketch below. Describe in detail what is seen on the 
screen. Can geometrical optics account for what is observed? 

 

D-1  Setup for observing white light through the teeth of a comb 

2.  Shining Laser Light Through a Transmission Grating.  Replace the Mag-Lite above with 
an ordinary low-power (5 mW or less) diode laser and the comb with a transmission grating 
(around 5000 lines/inch). Observe the pattern produced by the light passing through the grating, 
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first on the screen and then on a distant wall. Describe in detail what is observed. Can 
geometrical optics account for the patterns observed? 

3.  Shining Laser Light Through a Pinhole.  Arrange a 5-mW diode laser, pinhole 
(50 micrometers or so in diameter), and screen along an optical bench. Carefully align the laser 
beam so that it falls perpendicularly on the tiny pinhole. Observe the light that passes through 
the pinhole on a white cardboard screen. Make minor adjustments to the relative positions of the 
laser and pinhole to obtain the brightest pattern on the screen. Move the screen far enough away 
so you can see clearly (in a darkened room) the details of the light pattern. Describe what you 
see. Can geometrical optics account for the light pattern? 
 
 

Basic Concepts 

I.  LIGHT WAVES AND PHYSICAL OPTICS 
In our study of ray optics and image formation, we represented image points as “geometrical 
points,” without physical extent. That, of course, followed logically since light rays were used 
to locate the image points and light rays are lines that intersect clearly at geometrical points. But 
in reality, if you were to examine such image points with a microscope, you would see structure 
in the “point,” a structure explained only when you invoke the true wave nature of light. 

In effect, then, we are saying that, with large objects such as prisms, mirrors, and lenses—large 
in the sense that their dimensions are millions of times that of the wavelength of light—
interference and diffraction effects are still present in the imaging process, but they occur on so 
small a scale as to be hardly observable to the naked eye. To a good approximation, then, with 
“large” objects we are able to describe light imaging quite satisfactorily with geometrical (ray) 
optics and obtain fairly accurate results. But when light waves pass around small objects, such 
as a 100-µ-diameter human hair, or through small openings, such as a 50-µ pinhole, ray optics 
cannot account for the light patterns produced on a screen beyond these objects. Only wave 
optics leads to the correct interpretation of such patterns. 

And so now we turn to a study of the wave nature of light and to the fascinating phenomena of 
interference, diffraction, and polarization—and of such devices as gratings and thin-film 
coatings. We shall see that interference occurs when two or more light waves pass through the 
same region and add to or subtract from each other. Diffraction occurs when light waves pass 
through small openings or around small obstacles and spread, and polarization occurs due to the 
transverse nature of the electric field vibration in a propagating electromagnetic wave. Before we 
look at these phenomena, let’s review briefly the nature of waves, wave fronts, and wave motion. 

A.  Physics of waves and wave motion 
Wave optics treats light as a series of propagating electric and magnetic field oscillations. While 
we cannot see these extremely rapid oscillations, their wave behavior is similar to that of water 
waves. Thus, we find it useful to picture waves and wave motion in terms of simple water 
waves, such as those created by a bobbing cork on an otherwise quiet pond. See Figure 4-1a. 
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Figure 4-1  Water waves and wave fronts 

The bobbing cork generates a series of surface disturbances that travel outward from the cork. 
Figure 4-1b shows the same disturbances traveling away from point A (the cork) as a series of 
successive wave fronts labeled crests and troughs. Recall that a wave front is a locus of points 
along which all phases and displacements are identical. The solid circles in Figure 4-1b depict 
the outward-moving wave crests; the dashed circles represent wave troughs. Adjacent crests are 
always a wavelength apart, as are the adjacent troughs. 

If we were able to look along the surface of the pond, we would see a sinusoid-like profile of the 
traveling wave such as that shown in Figure 4-2a. The profile is a snapshot of the water 
displacement at a certain instant of time along a direction such as AB, labeled back in 
Figure 4-1b. The water surface rises to a maximum displacement (+y0) and falls to a minimum 
displacement (−y0) along the profile. As time varies, the “snapshot” profile in Figure 4-2a 
moves to the right with its characteristic wave speed. The radial distance outward from the cork 
at position A, shown in Figure 4-1b, is denoted by the variable r in Figure 4-2a. 

 
(a)  Wave profile along the pond at a certain instant of time 

 
(b)  Wave displacement at a fixed position on the pond as a function of time 

Figure 4-2  Two aspects of wave motion for a traveling wave 
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Now suppose that—instead of looking along the surface of the pond—we look at the moving 
wave at one definite position on the pond, such as at point Q in Figure 4-2a. What happens to 
the wave displacement at this fixed position as the wave disturbances move away from the 
cork? We know from experience that the surface of the pond at Q rises and falls, repeatedly—as 
long as the wave disturbances move past this position. This wave displacement as a function of 
time—at a fixed position—is shown in Figure 4-2b. Note again that the shape is sinusoid-like. 

Since we’re concentrating on one position in Figure 4-2b, we cannot “see” the whole wave. All 
we see is the up and down motion of point Q. The time between successive maxima or  
successive minima is defined as the period (τ) of the wave. The number of times point Q goes 
from max to min to max per second is called the frequency (f ) of the wave. The period τ and the 
frequency f are related by the simple relationship f = 1/τ, as presented in Module 1-1, Nature 
and Properties of Light. 

B.  The mathematics of sinusoidal waveforms (optional)* 
The two aspects of wave motion depicted in Figures 4-2a and 4-2b—one at a fixed time, the 
other at a fixed position—are addressed in a mathematical equation that describes a sinusoidally 
varying traveling wave. Refer to Equation 4-1, 

 
y(r, t) = y0 sin 2π

λ
r t−L

NM
O
QPva f  

 
(4-1) 

 

where: y(r, t) is the wave displacement at position r and time t 
 y0 is the wave amplitude as shown in Figure 4-2a 
 λ is the wavelength 
 r is the position along the traveling wave 
 v is the wave speed, equal to λ × f, and 
 t is the time 

If we “freeze” time at some value t0, for example, we obtain the specialized equation 

y(r, t0) = y0 sin 2π
λ

r −L
NM

O
QPconstanta f . This is a mathematical description of the wave profile 

shown in Figure 4-2a. On the other hand, if we select a fixed position r0, we obtain another 

specialized equation y(r0, t) = y0 sin 2π
λ

constant v−L
NM

O
QPtb g . This is a mathematical description of 

the waveform shown in Figure 4-2b. 

The factor in brackets in Equation 4-1 defines the phase angle φ of the wave at position r and 
time t. Thus, 

                                                 
*The text material in this section, through Example 1, is optional. Depending on the background of the class, this 
section may or may not be covered. 
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φ = 2 vπ

λ
r t−L

NM
O
QPb g  

 (4-2) 

The phase angle is the same for any point on a given wave front, as mentioned earlier. For 
example, for successive wave fronts whose values of φ are π2 , π π2 2+ , π π2 4+ , and so 

on—always 2π radians (360°) apart—sin φ for each of these angles equals +1, so that y(r, t) 
equals +y0, a maximum positive displacement. Such wave fronts are crests. Similarly, for 
successive wave fronts whose values of φ are 3 2

π , 3
2 2π π+ , 3

2 4π π+ , etc., always 2π 

radians apart, sin φ for each of these angles equals −1, so that y(r, t) equals −y0, the maximum 
negative wave displacement. Such wave fronts are troughs. And so it goes for all other wave 
fronts between the crests and troughs. For example, points P, Q, and R in Figure 4-2a, all with 
the same wave displacement, represent wave fronts a wavelength apart with phase angles of 
values differing by 2π. Example 1 provides an application of Equations 4-1 and 4-2 to circular 
water waves on a quiet pond. 

Example 1 

Circular water waves such as those shown in Figures 4-1a and 4-1b move outward from a bobbing 
cork at A. The cork bobs up and down and back again—a complete cycle—once per second, and 
generates waves that measure 10 cm from crest to crest. Some time after the wave motion has been 
established, we begin to time the motion with a stopwatch. At a certain time t = 10 s on the watch, 
we notice that the wave profile has the shape shown below. 

 
 

(a)  What is the wave frequency f for this water wave? 

(b)  What is its wavelength λ? 

(c)  What is its wave speed v? 

(d)  What is the phase angle φ for a wave front at position r = 102.5 cm at time t = 10 s? 

(e)  What is the wave displacement y on the wave front at r = 102.5 cm? 

(f)  What is the phase angle φ for a wave front at r = 107.5 cm at t = 10 s? 

(g)  What is the wave displacement y on the wave front at r = 107.5 cm? 

(h)  If we focus on the wave motion at the position r = 105 cm and let time vary, what kind of 
motion do we observe? 

Solution: 
(a)  The wave frequency is 1 cycle/s; (therefore, the period τ = 1/f is 1 second). 
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(b)  The wavelength λ is the crest-to-crest distance, thus λ = 10 cm. 

(c)  The wave speed v = λ × f = 10 cm × 1/s = 10 cm/s. 

(d)  At t = 10 s, r = 102.5 cm and v = 10 cm/s. Using φ = 
2π
λ

r t−
L
NM

O
QPvb g , we get 

φ = 
2
10

102 5 10 10
π

. − ×( )  = 
2
10

2 5
π

.( )  = π 2  rad, an angle of 90° 

(e)  y = y0 sin φ = y0 sin π 2d i = y0 sin (90°) = y0 , since sin 90° = 1. Since y = y0 at this location and 

y0 is the maximum positive displacement, the circular wave front is a crest. 

(f)  At t = 10 s, r = 107.5 cm and v = 10 cm/s. Using the expression for the phase angle φ, we get 

φ = 
2
10

107 5 10 10
π

. − ×( ) = 
2
10

7 5
π

.( ) = 3 2
π , an angle of 270° 

(g)  y = y0 sin φ = y0 sin 
3
2
πF
H
I
K  = y0 sin (270°) = − y0, since sin 270° = −1. Since y = −y0, a maximum 

negative displacement, the circular wave front at r = 107.5 cm is a trough. 

(h)  At r = 105 cm, we see the water move up and down, repeatedly, between displacements of (+y0) 
and (−y0), completing a cycle of motion once per second. Thus, the frequency of this vertical motion 
is 1 cycle/s and its period is 1 s. 

 

Before we leave this section, we need to make a connection between the wave motion we are 
studying here with water waves and the wave motion of light waves. For light waves it is the 
electric field and magnetic field that vary between positive and negative maxima—in a direction 
transverse to (perpendicular to) the direction of propagation just as the vertical displacement of 
the water does for water waves. Figure 4-3 shows a profile of the transverse electric field E and 
magnetic field B at one instant of time. It is easy to see the sinusoidal form of the varying E and 
B values, much like the sinusoidal form of the varying displacement values for the water wave 
in Figure 4-2a. When we study interference, diffraction, and polarization, we can ignore the B-
field and concentrate only on the varying E-field. 

 

Figure 4-3  Profiles of the electric and magnetic fields in a light wave at an instant of time 
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II.  INTERACTION OF LIGHT WAVES 

A.  The principle of superposition 
An understanding of light wave interference begins with an answer to the question, “What 
happens at a certain position in space when two light waves pass through that position at the 
same time? To answer this question, we invoke the principle of superposition, which states: 

When two or more waves move simultaneously through a region of space, each wave 
proceeds independently as if the other were not present. The resulting wave “displacement” 
at any point and time is the vector sum of the “displacements” of the individual waves. 

This principle holds for water waves, mechanical waves on strings and on springs (the Slinky!), 
and for sound waves in gases, liquids and solids. Most important for us, it holds for all 
electromagnetic waves in free space. So, if we have two light waves passing through some 
common point P, where Wave 1 alone causes a “displacement” Y1 and Wave 2 alone a 
displacement Y2, the principle of superposition states that the resultant displacement YRES is 
given by a vector sum of the two displacements. If both displacements are along the same 
direction—as they will be for most applications in this module—we can add the two 
displacements algebraically, as in Equation 4-3. 

 YRES = Y1 + Y2  (4-3) 
 

An application of Equation 4-3 is shown in Figure 4-4, where Wave 1 and Wave 2 are moving 
along the x-direction to the right. Wave 2 is drawn with ¾ the amplitude and ½ the wavelength 
of Wave 1. The resultant wave, obtained by applying Equation 4-3 at each point along the 
x-direction, is shown by the solid waveform, YRES. 

 

Figure 4-4  Superposition of two waves moving along the same direction 

In Figure 4-5, we show the interference of two sinusoidal waves of the same amplitude and 
same frequency, traveling in the same direction. The two waves are represented by the light 
solid and broken curves, the resultant by the solid heavy curve. In Figure 4-5a the two waves are 
exactly in phase, with their maximum and minimum points matching perfectly. Applying the 
principle of superposition to the two waves, the resultant wave is seen to have the same 
amplitude and frequency but twice the amplitude 2A of either initial wave. This is an example 
of constructive interference. In Figure 4-5b the two curves are exactly out of phase, with the 
crest of one falling on the trough of the other, and so on. Since one wave effectively cancels the 
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effect of the other at each point, the resultant wave has zero displacement everywhere, as 
indicated by the solid black line. This is an example of destructive interference. In Figure 4-5c, 
the two waves are neither completely in phase nor completely out of phase. The resultant wave 
then has an amplitude somewhere between A and 2A, as shown. 

 

Figure 4-5  Interference of two identical sinusoidal waves 

B.  Huygens’ wavelets 
Long before people understood the electromagnetic character of light, Christian Huygens—a 
17th-century scientist—came up with a technique for propagating waves from one position to 
another, determining, in effect, the shapes of the developing wave fronts. This technique is basic 
to a quantitative study of interference and diffraction, so we cover it here briefly. Huygens 
claimed that: 

Every point on a known wave front in a given medium can be treated as a point source of 
secondary wavelets (spherical waves “bubbling” out of the point, so to speak) which spread 
out in all directions with a wave speed characteristic of that medium. The developing wave 
front at any subsequent time is the envelope of these advancing spherical wavelets. 

Figure 4-6 shows how Huygens’ principle is used to demonstrate the propagation of successive 
(a) plane wave fronts and (b) spherical wave fronts. Huygens’ technique involves the use of a 
series of points P1… P8, for example, on a given wave front defined at a time t = 0. From these 
points—as many as one wishes, actually—spherical wavelets are assumed to emerge, as shown 
in Figures 4-6a and 4-6b. Radiating outward from each of the P-points, with a speed v, the 
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series of secondary wavelets of radius r = vt defines a new wave front at some time t later. In 
Figure 4-6a the new wave front is drawn as an envelope tangent to the secondary wavelets at a 
distance r = vt from the initial plane wave front. It is, of course, another plane wave front. In 
Figure 4-6b, the new wave front at time t is drawn as an envelope tangent to the secondary 
wavelets at a distance r = vt from the initial spherical wave front. It is an advancing spherical 
wave front. 

 
(a)  Plane waves (b)  Spherical waves 

Figure 4-6  Huygens’ principle applied to the propagation of plane and spherical wave fronts 

While there seems to be no physical basis for the existence of Huygens’ “secondary” point 
sources, Huygens’ technique has enjoyed extensive use, since it does predict accurately—with 
waves, not rays—both the law of reflection and Snell’s law of refraction. In addition, Huygens’ 
principle forms the basis for calculating, for example, the diffraction pattern formed with 
multiple slits. We shall soon make use of Huygens’ secondary sources when we set up the 
problem for diffraction from a single slit. 

III.  INTERFERENCE 
Today we produce interference effects with little difficulty. In the days of Sir Isaac Newton and 
Christian Huygens, however, light interference was not easily demonstrated. There were several 
reasons for this. One was based on the extremely short wavelength of visible light—around 
20 millionths of an inch—and the obvious difficulty associated with seeing or detecting 
interference patterns formed by overlapping waves of so short a wavelength, and so rapid a 
vibration—around a million billion cycles per second! Another reason was based on the 
difficulty—before the laser came along—of creating coherent waves, that is, waves with a 
phase relationship with each other that remained fixed during the time when interference was 
observed. 

It turns out that we can develop phase coherence with nonlaser light sources to demonstrate 
interference, but we must work at it. We must “prepare” light from readily available incoherent 
light sources—which typically emit individual, uncoordinated, short wave trains of fixed phase 
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of no longer than 10−8 seconds—so that the light from such sources remains coherent over 
periods of time long enough to overlap and produce visible interference patterns. There are 
generally two ways to do this. 

• Develop several coherent virtual sources from a single incoherent “point” source with 
the help of mirrors. Allow light from the two virtual sources to overlap and interfere. 
(This method is used, for example, in the Loyd’s mirror experiment.) 

• Take monochromatic light from a single “point” source and pass it through two small 
openings or slits. Allow light from the two slits to overlap on a screen and interfere. 

We shall use the second of these two methods to demonstrate Thomas Young’s famous double-
slit experiment, worked out for the first time at the very beginning of the 19th century. But first, 
let’s consider the basics of interference from two point sources. 

A.  Constructive and destructive interference 
Figure 4-7 shows two “point” sources of light, S and S′, whose radiating waves maintain a fixed 
phase relationship with each other as they travel outward. The emerging waves are in effect 
spherical, but we show them as circular in the two-dimensional drawing. The solid circles 
represent crests, the dashed circles, troughs. 

Earlier, in Figure 4-5a, we saw the effect of constructive interference for waves perfectly in 
phase and, in Figure 4-5b, the effect of destructive interference for waves perfectly out of phase. 
In Figure 4-7, along directions OP, OP2, and OP2′ (emphasized by solid dots) crests from S and 
S′ meet (as do the troughs), thereby creating a condition of constructive interference. As a 
result, light striking the screen at points P, P2, and P2′ is at a maximum intensity and a bright 
spot appears. By contrast, along directions OP1 and OP1′ (emphasized by open circles) crests 
and troughs meet each other, creating a condition of destructive interference. So at points P1 and 
P1′ on the screen, no light appears, leaving a dark spot. 
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Figure 4-7  Wave interference created by overlapping waves from 
coherent sources S and S′ 

The requirement of coherent sources is a stringent requirement if interference is to be observed. 
To see this clearly, suppose for a moment that sources S and S′ in Figure 4-7 are, in fact, two 
corks bobbing up and down on a quiet pond. As long as the two corks maintain a fixed 
relationship between their vertical motions, each will produce a series of related crests and 
troughs, and observable interference patterns in the overlap region will occur. But if the two 
corks bob up and down in a random, disorganized manner, no series of related, fixed-phase 
crests and troughs will form and no interference patterns of sufficiently long duration can 
develop, and so interference will not be observed. 

B.  Young’s double-slit interference experiment 
Figure 4-8a shows the general setup for producing interference with coherent light from two 
slits S1 and S2. The source S0 is a monochromatic point source of light whose spherical wave 
fronts (circular in the drawing) fall on the two slits to create secondary sources S1 and S2. 
Spherical waves radiating out from the two secondary sources S1 and S2 maintain a fixed phase 
relationship with each other as they spread out and overlap on the screen, to produce a series of 
alternate bright and dark regions, as we saw in Figure 4-7. The alternate regions of bright and 
dark are referred to as interference fringes. Figure 4-8b shows such interference fringes, greatly 
expanded, for a small central portion of the screen shown in Figure 4-8a. 
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Figure 4-8  Young’s double-slit interference experiment showing 
(a) general setup and (b) typical interference fringes 

1.  Detailed analysis of interference from a double slit:  With the help of the principle of 
superposition, we can calculate the positions of the alternate maxima (bright regions) and 
minima (dark regions) shown in Figure 4-8. To do this we shall make use of Figure 4-9 and the 
following conditions: 

(a)  Light from slits S1 and S2 is coherent; that is, there exists a fixed phase relationship 
between the waves from the two sources. 

(b)  Light from slits S1 and S2 is of the same wavelength. 

 

Figure 4-9  Schematic for double-slit interference calculations. Source S0 is generally a small hole or 
narrow slit; sources S1 and S2 are generally long, narrow slits perpendicular to the page. 
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In Figure 4-9, light waves from S1 and S2 spread out and overlap at an arbitrary point P on the 
screen. If the overlapping waves are in phase, we expect a bright spot at P; if they are out of 
phase, we expect a dark spot. So the phase difference between the two waves arriving at point P 
is a key factor in determining what happens there. We shall express the phase difference in 
terms of the path difference, which we can relate to the wavelength λ. 

For clarity, Figure 4-9 is not drawn to scale. It will be helpful in viewing the drawing to know 
that, in practice, the distance s from the slits to the screen is about one meter, the distance a 
between slits is less than a millimeter, so that the angle θ in triangle S1S2Q, or triangle OPO′, is 
quite small. And on top of all this, the wavelength of light is a fraction of a micrometer. 

The path difference ∆ between S1P and S2P, as seen in Figure 4-9, is given by Equation 4-4, 
since the distances PS1 and PQ are equal and since sin θ = ∆/a in triangle S1S2Q. 

 ∆ = S2P − S1P = S2Q = a sin θ  (4-4) 
 

If the path difference ∆ is equal to λ or some integral multiple of λ, the two waves arrive at P in 
phase and a bright fringe appears there (constructive interference). The condition for bright (B) 
fringes is, then, 

 ∆B = a sin θ = mλ where m = 0, ±1, ±2, …  (4-5) 
 

The number m is called the order number. The central bright fringe at θ = 0 (point 0′ on the 
screen) is called the zeroth-order maximum (m = 0). The first maximum on either side, for 
which m = ±1, is called the first-order maximum, and so on. 

If, on the other hand, the path difference at P is an odd multiple of λ/2, the two waves arrive out 
of phase and create a dark fringe (destructive interference). The condition for dark (D) fringes is 
given by Equation 4-6. 

 ∆D = a sin θ = (m + ½)λ where m = 0, ±1, ±2, …   (4-6) 
 

Since the angle θ exists in both triangles S1S2Q and OPO′, we can find an expression for the 
positions of the bright and dark fringes along the screen. Because θ is small, as mentioned 
above, we know that sin θ ≅ tan θ, so that for triangle OPO′ we can write 

 
sin θ ≅ tan θ = y

sλ
 

(4-7) 

 

Combining Equation 4-7 with Equations 4-5 and 4-6 in turn, by substituting for sin θ in each, 
we obtain expressions for the position y of bright and dark fringes on the screen. 

 
y s

a
mB =

λ  where m = 0, ±1, ±2, … 
 

(4-8) 

 

and 
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y s

a
mD = +

λ 1
2b g  where m = 0, ±1, ±2, … 

 
(4-9) 

 

In Example 2, through the use of Equation 4-8, we recreate the method used by Thomas Young 
to make the first measurement of the wavelength of light. 

Example 2 

A double-slit source with slit separation 0.2 mm is located 1.2 m from a screen. The distance 
between successive bright fringes on the screen is measured to be 3.30 mm. What is the wavelength 
of the light? 

Solution: Using Equation 4-8 for any two adjacent bright fringes, we can obtain an equation for 
∆y, the fringe separation. Thus, 

∆ = − =
+

− =
+

( ) ( )
y y

s m
a

s m
a

s
aB m B mb g b g1

1λ λ λ
 

∴ = =∆
∆

y
s

a
y a
s

λ
λ, ,so that  giving
a f

 

λ =
× ×

= × = ×
− −

− −3 30 10 2 10

1 2
5 5 10 550 10

3 4
7 9.

.
.

m m

 m
m m

c hc h
 

So the wavelength is about 550 nm and the light is yellowish green in color. 

 

2.  Intensity variation in the interference pattern. Knowing how to locate the positions for 
the fringes on a screen, we might now ask, “How does the brightness (intensity) of the fringes 
vary as we move, in either direction, from the central bright fringe (m = 0)?” We obtain a 
satisfactory answer to this question by representing the two separate electric fields at point P, 
the one coming from S1 as E1 = E0 sin 2πft and the one from S2 as E2 = E0 sin (2πft + δ). The 
waves are assumed to have the same amplitude E0. Here δ is the phase angle difference between 
the two waves arriving at P. The path difference ∆ is related to the phase angle δ by the 
relationship 
 δ π

λ∆
=

2  
 

(4-10) 

 

so that if ∆ = λ, δ = 2π rad = 360°, if ∆ = λ/2, δ = π rad = 180°, and so on. 

Then, by using the principle of superposition, we can add the two electric fields at point P to 
obtain ERES = E1 + E2. (Carrying out this step involves some trigonometry, the details of which 
can be found in most optics texts.) Since the intensity I of the light goes as the square of the 
electric field E, we square ERES and average the result over one cycle of wave oscillation at P, 
obtaining, finally, an expression for the average intensity, IAV. 

 
IAV = I0 cos2 δ

2

 
(4-11) 
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Here δ is the critical phase angle difference at point P. For all points P for which δ = 0, 2π, 4π, 

and so on, corresponding to ∆ = 0, λ, 2λ, etc., cos2 δ
2

1F
HG
I
KJ =  and IAV = I0, the maximum possible 

“brightness.” At these points, bright fringes form. For δ = π, 3π, 5π, and so on, corresponding to 

∆ = λ/2, 3 λ/2, 5 λ/2, etc., cos2 δ
2

0F
HG
I
KJ = , and dark fringes form. 

The maximum intensity I0 is equal to (E0 + E0)2 or 4E0
2, since each wave has amplitude E0. 

Further, from Equations 4-10 and 4-4, we see that 

 
δ

π
λ

π
λ

θ= =
2 2

∆ asin
 

(4-12) 

 

so that the phase angle δ is connected clearly through the angle θ to different points P on the 

screen. Going one step further, replacing sin θ by 
y
s

 in Equation 4-12, we have the connection 

between δ and any position y on the screen, such that  

 
δ

π
λ

=
2 a

s
y 

 
(4-13) 

 

With Equation 4-13 and I0 = 4 E0
2, we can rewrite Equation 4-11 in a form that relates IAV 

directly to a position y on the screen. 

 
I E a

s
yAV = F

H
I
K4 0

2 2cos π
λ

 
 

(4-14) 

 

where: IAV = intensity of light along screen at position y 

 E0 = amplitude of light wave from S1 or S2 

 s = distance from the plane of the double slit to the screen 

 a = slit separation 
 λ = wavelength of monochromatic light 
 y = distance above (or below) central bright fringe on the screen 

Example 3 

Using Equation 4-14 and the double-slit arrangement described in Example 2, determine how IAV 
varies along the screen as a function of y. 

Solution: 

I E
a
s

yAV = F
H
I
K4 0

2 2cos
π

λ
, where a = 2 × 10–4 m, λ = 550 × 10–9 m, and s = 1.2 m 
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I E
y

AV =
×

×

−

− ( )

F
HG

I
KJ4

2 10

550 10 1 20
2 2

4

9cos
.

πc h
 

I E yAV = 4 3030
2 2

cos  πa f 
Note that, when y = 

1
303

2
303

3
303

, ,  and so on, the angle (303 πy) becomes π rad, 2π rad, 3π rad, and 

so on, for which cos2(303 πy) is always 1. At these values of y, we have the first order, second order 
and third order of bright fringes—each of intensity IAV = 4E0

2. Since the interval ∆y between 

successive fringes is 
1

303
 meter, we get ∆y = 3.3 × 10−3 m or 3.3 mm, in agreement with the value 

of ∆y given in Example 2. 

 

C.  Thin-film interference 
Interference effects provide us with the rainbow of colors we often see on thin-film soap 
bubbles and “oil slicks.” Each is an example of the interference of white light reflecting from 
opposite surfaces of the thin film. When thin films of different refractive indexes and 
thicknesses are judiciously stacked, coatings can be created that either enhance reflection 
greatly (HR coats) or suppress reflection (AR coats). A basic appreciation of these phenomena 
begins with an understanding of interference in a single thin film. 

1.  Single-film interference. The geometry for thin-film interference is shown in Figure 4-10. 
We assume that the light strikes the film—of thickness t and refractive index nf —at near-
perpendicular incidence. In addition we take into account the following established facts: 

• A light wave traveling from a medium of lower refractive index to a medium of higher 
refractive index automatically undergoes a phase change of π (180°) upon reflection. 
A light wave traveling from a medium of higher index to one of lower index undergoes 
no phase change upon reflection. (We state this without proof.) 

• The wavelength of light λn in a medium of refractive index n is given by λn = λ0/n, 
where λ0 is the wavelength in a vacuum or, approximately, in air. 
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Figure 4-10  Two-beam interference from a thin film. Rays reflected from  
the film’s top and bottom plane surfaces are brought together at P by a lens. 

In Figure 4-10, we show a light beam in medium of index n0 incident on the transparent film of 
index nf. The film itself rests on a substrate of index ns. Generally, the initial medium is air, so 
that n0 = 1. The beam incident on the film surface at A divides into reflected and refracted 
portions. The refracted beam reflects again at the film-substrate interface at B and leaves the 
film at C, in the same direction as the beam reflected at A. Part of the beam may reflect 
internally again at C and continue to experience multiple reflections within the film layer until it 
has lost its intensity. There will thus exist multiple parallel beams emerging from the top 
surface, although with rapidly diminishing amplitudes. 

Unless the reflectance of the film is large, a good approximation to the more complex situation of 
multiple reflection is to consider only the first two emerging beams. The two parallel beams 
leaving the film at A and C can be brought together by a converging lens, the eye, for example. 
The two beams intersecting at P overlap and interfere. Since the two beams travel different paths 
from point A onward, one in air, the other partly in the film, a relative phase difference develops 
that can produce constructive or destructive interference at P. The optical path difference ∆—in 
the case of normal incidence—is the additional path length ABC traveled by the refracted ray. 
The optical path difference in the film is equal to the product of the geometrical path difference 
(AB + BC) times the refractive index of the film. If the incident ray is nearly perpendicular to the 
surface, the path difference (AB +BC) is approximately equal to twice the film thickness 2t. Then, 

 ∆ = n(AB + BC) = n(2t)  (4-15) 
 

where t is the film thickness. For example, if 2nt = λ0, the wavelength of the light in air, the two 
interfering beams—on the basis of optical path difference alone—would be in phase and 
produce constructive interference. 

However, an additional phase difference, due to the phenomenon mentioned above—phase 
change on reflection—must be considered. Suppose that nf > n0 and nf > ns. Often, in practice, 
n0 = ns , because the two media bounding the film are identical, as in the case of a water film 
(soap bubble) in air. Then the reflection at A occurs with light going from a lower index n0 (air) 
toward the higher index nf (film). The reflection at B, on the other hand, occurs for light going 
from a higher index nf (film) toward a lower index ns (air). Thus, the light reflecting at A shifts 
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phase by 180° (equivalent to one-half wavelength) while the light reflecting at B does not. As a 
result, if 2nt = λ0 and we add to this the additional λ0/2 phase shift for the beam reflecting at A, 
we have a total optical path difference of (λ0 + λ0/2), leading to destructive—rather than 
constructive—interference. So, in addition to the phase change introduced by path differences, 
we must always consider the possible phase change upon reflection at the interfaces. 

If we denote ∆p as the optical path difference due to the film and ∆r as the equivalent path 
difference introduced upon reflection, the condition for constructive interference becomes 

 ∆p + ∆r = mλ,   (m = 1, 2, 3, …)  (4-17)
 

where m equals the order of interference. 

For a thin film of thickness t and refractive index nf, located in air, ∆p = 2nf t (according to 
Equation 4-15), and ∆r = λ0/2. Thus, Equation 4-17—for constructive interference—becomes 

normal incidence: 2nf t + 
λ

λ0
02

= m ,   (m = 1, 2, 3, …) 
 

(4-18)

 

where λ0 is the wavelength in air. For destructive interference, Equation 4-18 changes slightly to 

normal incidence: 2nf t +
λ

λ0
02

1
2= +md i ,   (m = 1, 2, 3, …) 

 
(4-19)

 

Let’s apply these ideas to the results of interference seen in soap-bubble films. 

Example 4 

White light is incident normally on the surface of a soap bubble. A portion of the surface reflects 
green light of wavelength λ0 = 540 nm. Assume that the refractive index of the soap film is near that 
of water, so that nf = 1.33. Estimate the thickness (in nanometers) of the soap bubble surface that 
appears green in second order. 

Solution: Since the soap-bubble film is surrounded by air, Equation 4-18 applies. Rearranging 
Equation 4-18 to solve for the thickness t gives 

t
m

n f
=

−FH IKλ
λ

0
0

2
2

 

where m = 2, nf = 1.33, and λ0 = 540 nm. Thus, 

t
n f

= = ≅
( )
( )

3
2
2

1 5 540
2 1 33

3050λ .
.

 nm
 nm  

The soap film thickness is about 0.3 thousandths of a millimeter. 
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2.  Single-layer antireflection (AR) coat. A common use of single-layer films deposited on glass 
substrates occurs in the production of antireflecting (AR) coatings on optical surfaces, often 
found in lenses for cameras and binoculars. The arrangement of a single-layer AR coat is shown 
in Figure 4-11, with the film made of magnesium fluoride (MgF2) coated on top of a glass 
substrate. 

 

Figure 4-11  Single-layer AR coat on glass substrate 

According to the rules for phase change upon reflection, both rays 1 and 2 undergo 180° shifts 
equal to λ0/2, since both reflections occur at interfaces separating lower-to-higher refractive 
indexes. So the difference in phase between rays 1 and 2 comes from only the optical path 
difference due to the coating thickness t. If the thickness t is such that ray 2 falls behind ray 1 by 
λcoat/2, the two rays interfere destructively, minimizing the reflected light. At near-normal 
incidence this requires that the distance 2t, down and back, equal λcoat/2. The mathematical 

condition for antireflection is then given by 2t = 
λ

coat

2
, and, since λcoat = λair

fn
, we have finally 

 
t

n
air

f
=
λ
4

 
 

(4-20) 

Example 5 

Determine the minimum thickness of an AR coat of magnesium fluoride, MgF2, deposited on a glass 
substrate (ns = 1.52) if the coating is to be highly antireflective for the center of the white light 
spectrum, say at λair = 550 nm. The refractive index for MgF2 is near 1.38. 

Solution: Application of Equation 4-20 gives 

t
n
air

f
min = =

( )
λ
4

550
4 1 38

 nm
.

 

tmin = 99 6 100.  nm,  about  nm  

Without a coating (bare lens surface) the amount of light reflected is around 30% of the incident 
light. With a single-layer AR coat of 100 nm of MgF2 on the lens surface, the light reflected drops to 
around 10%. Thus, the transmission of light through the lens increases from 70% to 90%. 
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3.  Interference with multilayer films. As an extension of single-layer interference, consider 
the multilayer stack shown in Figure 4-12.  

 

Figure 4-12  Multilayer stack of quarter-wave thin films of alternating high and low refractive indexes. 
Each film has an optical thickness of λf /4. 

The stack is composed of alternate layers of identical high index and low index films. If each 
film has an optical thickness of λf /4, a little analysis shows that all emerging beams are in 
phase. Multiple reflections in the region of λ0 increase the total reflected intensity, and the 
quarter-wave stack performs as an efficient mirror. Such multilayer stacks can be designed to 
satisfy extinction of reflected light—AR effect—or enhancement of reflected light—HR 
effect—over a greater portion of the spectrum than with a single-layer film. Such multilayer 
stacks are used in the design of narrow-band interference filters that filter out unwanted light, 
transmitting only light of the desired wavelength. For antireflection over broader-wavelength 
regions, the optical industry produces HEBBAR™ coatings (High Efficiency Broadband Anti 
Reflection) for regions of ultraviolet and infrared light, as well as for visible light. The coating 
industry also produces V-coatings, which reduce reflectance to near zero at one specific 
wavelength for an optical component. High-reflection coatings are produced over broadbands 
with multilayer stacks of thin films—just as for the antireflection coatings. In addition HR coats 
are used as overcoatings on metallic reflectors, which typically use aluminum, silver, and gold 
as the base metals. The overcoats protect the metals from oxidation and scratching. 

IV.  DIFFRACTION 
The ability of light to bend around corners, a consequence of the wave nature of light, is 
fundamental to both interference and diffraction. Diffraction is simply any deviation from 
geometrical optics resulting from the obstruction of a wave front of light by some obstacle or 
some opening. Diffraction occurs when light waves pass through small openings, around 
obstacles, or by sharp edges. 
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Several common diffraction patterns—as sketched by an artist—are shown in Figure 4-13. 
Figure 4-13a is a typical diffraction pattern for HeNe laser light passing through a circular 
pinhole. Figure 4-13b is a typical diffraction pattern for HeNe laser light passing through a 
narrow (vertical) slit. And Figure 4-13c is a typical pattern for diffraction by a sharp edge. 

 

(a)  Pinhole diffraction   

Figure 4-13  Sketches of several common diffraction patterns 

The intricacy of the patterns should convince us—once and for all—that geometrical ray optics 
is incapable of dealing with diffraction phenomena. To demonstrate how wave theory does 
account for such patterns, we now examine the phenomenon of diffraction of waves by a single 
slit. 

A.  Diffraction by a single slit 
The overall geometry for diffraction by a single slit is shown in Figure 4-14. The slit opening, 
seen in cross section, is in fact a long, narrow slit, perpendicular to the page. The shaded 
“humps” shown along the screen give a rough idea of intensity variation in the pattern, and the 
sketch of bright and dark regions to the right of the screen simulates the actual fringe pattern 
seen on the screen. We observe a wide central bright fringe, bordered by narrower regions of 
dark and bright. The angle θ shown connects a point P on the screen to the center of the slit. 

 

Figure 4-14  Diffraction pattern from a single slit 
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Since plane waves are incident on the screen, the diffraction pattern—in the absence of the 
focusing lens—would be formed far away from the slit and be much more spread out than that 
shown in Figure 4-14. The lens serves to focus the light passing through the slit onto the screen, 
just a focal length f away from the lens, while preserving faithfully the relative details of the 
diffraction pattern that would be formed on a distant screen without the lens. 

To determine the location of the minima and maxima on the screen, we divide the slit opening 
through which a plane wave is passing into many point sources (Huygens’ sources), as shown 
by the series of tiny dots in the slit opening of Figure 4-14. These numerous point sources send 
out Huygens’ spherical waves, all in phase, toward the screen. There, at a point such as P, light 
waves from the various Huygens’ sources overlap and interfere, forming the variation in light 
intensity shown in Figure 4-14. Thus, diffraction considers the contribution from every part of 
the wave front passing through the aperture. By contrast, when we looked at interference from 
Young’s double slit, we considered each slit as a point source, ignoring details of the portions of 
the wave fronts in the slit openings themselves. 

The mathematical details involved in adding the contributions at point P from each of the 
Huygens’ sources can be found in basic texts on physical optics. Here we give only the end 
result of the calculation. Equation 4-21 locates the minima, ymin, on the screen, in terms of the 
slit width b, slit-to-screen distance L, wavelength λ, and order m. 

 
y m L

bmin =
λ     where m = 1, 2, 3, … 

 (4-21) 

 

Figure 4-15 shows the positions of several orders of minima and the essential parameters 
associated with the single-slit diffraction pattern. (The positions of the maxima are 
mathematically more complicated to express, so we typically work with the positions of the 
well-defined minima.) 

 

Figure 4-15  Positions of adjacent minima in the diffraction patterns (Drawing is not to scale.) 

Now let’s use Equation 4-21 to work several sample problems. 
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Example 6 

Coherent laser light of wavelength 633 nm is incident on a single slit of width 0.25 mm. The 
observation screen is 2.0 m from the slit. (a) What is the width of the central bright fringe? (b) What 
is the width of the bright fringe between the 5th and 6th minima? 

Solution: 
(a) The width of the central bright fringe is 2y1, where y1 is the distance to the first minimum 
(m = 1) on either side. Thus, using Equation 4-21, 

Width y
m L

b
= = =

×

×
=F

H
I
K

( ) ( )−

−2 2
2 1 633 10 2.0

2.5 10
0.011

9

4
λ ( ) m  m

m
 m

c h
 

The width of the central bright fringe is about 1 cm. 

(b) Width = y6 −y5 = 
6 5λ λ λL

b
L

b
L
b

− =  

 Width = 
633 10 2.0

2.5 10
5 10 0.5

9

4
3×

×
= × ≅

−

−
−

( ) m  m

m
m  cm

c h
.06  

The width of bright fringe between the 5th and 6th minima is about half the width of the central 
bright fringe. 

 

Example 7 

Monochromatic light is incident on a single slit of width 0.30 mm. On a screen located 2.0 m away, 
the width of the central bright fringe is measured and found to be near 7.8 mm. What is the 
wavelength of the incident light? 

Solution: Since the width of the central bright fringe is 7.8 mm, equal to 2y1, we see that 

y1 = 3.9 mm. Then, rearranging Equation 4-21 to find λ, we have λ =
y b

mL
min  

, where  

ymin = y1 = 3.9 mm, m = 1, L = 2.0 m, and b = 0.30 mm. Thus, 

λ =
× ×

= ×
− −

−

( )( )

3 9 10 3 10

1 2.0
5 85 10

3 4
7.

.
c hc h

m 

λ ≅ 585 nm, very near the principal wavelengths of light from sodium lamps. 

 

B.  Fraunhofer and Fresnel diffraction 
In general, if the observation screen is far removed from the slit on which plane waves fall (as in 
Figure 4-15) or a lens is used to focus the collimated light passing through the slit onto the 
screen (as in Figure 4-14), the diffraction occurring is described as Fraunhofer diffraction, after 
Joseph von Fraunhofer (1787-1826), who first investigated and explained this type of so-called 
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far-field diffraction. If however, no lens is used and the observation screen is near to the slit, for 
either incident plane or spherical waves, the diffraction is called Fresnel diffraction, after 
Augustin Fresnel (1788-1829), who explained this type of near-field diffraction. The 
mathematical calculations required to determine the details of a diffraction pattern and account 
for the variations in intensity on the pattern are considerably more complicated for Fresnel 
diffraction than for Fraunhofer diffraction, so typically one studies first the Fraunhofer 
diffraction patterns, as we have. 

Without going into the details of how to distinguish mathematically between Fresnel and 
Fraunhofer diffraction we can give results that help you decide whether the diffraction pattern 
formed is Fraunhofer or Fresnel in origin. Knowing this distinction helps you choose which 
equations to use in describing a particular diffraction pattern arising from a particular optical 
setup. 

1.  Criteria for far-field and near-field diffraction. Figure 4-16 shows the essential features 
of a general diffraction geometry, involving a source of light of wavelength λ, an opening to 
“obstruct” the light, and a screen to form the diffraction pattern. 

 

Figure 4-16  General diffraction geometry involving source, aperture, and screen 

The distance from source to aperture is denoted as Z and that from aperture to screen as Z′. 
Calculations based on geometries that give rise to Fraunhofer and Fresnel diffraction patterns 
verify the following: 

• If the distance Z from source to aperture and the distance Z′ from aperture to screen are 

both greater than the ratio aperture area
λ

F
H

I
K  by a factor of 100 or so, the diffraction 

pattern on the screen is characteristic of Fraunhofer diffraction—and the screen is said 
to be in the far field. For this situation, all Fraunhofer-derived equations apply to the 
details of the diffraction pattern. 

• If either distance—Z or Z′—is of the order of, or less than, the ratio aperture area
λ

F
H

I
K , the 

diffraction pattern on the screen is characteristic of Fresnel diffraction and is said to be 
in the near field. For this situation, all Fresnel-derived equations apply to the details of 
the diffraction pattern. 

• Equation 4-22 indicates the “rule-of-thumb” conditions to be satisfied for both Z and Z′ 
for Fraunhofer diffraction. 
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Far - field condition:
(Fraunhofer)            
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(4-22) 

 

Figure 4-18 illustrates these conditions and shows the locations of the near field, far field, and a 
gray area in between. If the screen is in the gray area and accuracy is important, a Fresnel 
analysis is usually applied. If the screen is in the gray area and approximate results are 
acceptable, a Fraunhofer analysis (significantly simpler than a Fresnel analysis) can be applied. 

 

Figure 4-17  Defining near-field and far-field regions for diffraction 

Figure 4-18 shows how we can satisfy the conditions for Fraunhofer diffraction, as spelled out 
in Equation 4-22, through the use of focusing lenses on both sides of the aperture 
(Figure 4-18a)—or with a laser illuminating the aperture and a focusing lens located on the 
screen side of the aperture (Figure 4-18b). Either optical arrangement has plane waves 
approaching and leaving the aperture, guaranteeing that the diffraction patterns formed are truly 
Fraunhofer in nature. 

 

Figure 4-18  Optical arrangements for Fraunhofer diffraction 
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Now let’s see how Equation 4-22 and Figure 4-18 are applied in a real situation. 

Example 8 

Minati, a photonics technician, has been asked to produce a Fraunhofer diffraction pattern formed 
when light from a HeNe laser (λ = 633 nm) passes through a pinhole of 150-µm diameter. In order 
to set up the correct geometry for Fraunhofer diffraction, Minati needs to know (a) the distance Z 
from the laser to the pinhole and (b) the distance Z′ from the pinhole to the screen. 

Solution: Minati needs first to test the conditions given in Equation 4-22 so she calculates the ratio 

of 
aperture area

λ
F
HG

I
KJ  assuming the pinhole to be circular. 

 Ratio =  
aperture area

λ

π

λ
= =

×

×

−

−
D2 6 2

94
314 150 10

4 633 10
( . )( )

( )( )
 

 Ratio = 0.0279 m 

(a)  Minati knows that light from the HeNe laser is fairly well collimated, so that nearly plane waves 
are incident on the pinhole, as illustrated in Figure 4-18b. She knows that plane waves are those that 
come—or appear to come—from very distant sources. So she concludes that, with the laser, the 
distance Z is much greater than 100 (0.0279 m)—that is, greater than about 2.8 m—and so the 
“Z-condition” for Fraunhofer diffraction is automatically satisfied. 

(b)  From her calculation of the ratio 
aperture area

λ
F
H

I
K  she knows also that the distance Z′ must be 

greater than 2.8 m. So she can place the screen 3 meters or so from the aperture and form a 
Fraunhofer diffraction pattern—OR she can place a positive lens just beyond the aperture—as in 
Figure 4-18b—and focus the diffracting light on a screen a focal length away. With the focusing 
lens in place she obtains a much reduced—but valid—Fraunhofer diffraction pattern located nearer 
the aperture. She chooses to use the latter setup, with a positive lens of focal length 10 cm, enabling 
her to arrange the laser, pinhole, and screen, all on a convenient 2-meter optical bench. 

 

2.  Several typical Fraunhofer diffraction patterns.  In successive order, we show the far-
field diffraction pattern for a single slit (Figure 4-19), a circular aperture (Figure 4-20), and a 
rectangular aperture (Figure 4-21). Equations that describe the locations of the bright and dark 
fringes in the patterns accompany each figure. 
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Single Slit 

 
 
Half-angle beam spread to first minimum, θ1/2, is: 

 θ1/2 = 
λ

d
 (4-23) 

Half-width of bright central fringe, y1, is: 

 y1 = 
Z

d
′ λ

 (4-24) 

where λ = wavelength of light, 
 d = slit width, and 
 Z′ = slit-to-screen distance 

Figure 4-19  Fraunhofer diffraction pattern for a single slit 

Circular Aperture 

 
 
Half-angle beam spread to first minimum, θ1/2, is: 

 θ1/2 = 
122. λ

D
 (4-25) 

Radius of central bright disk (airy disk), R, is: 

 R = 
1.22  λ Z

D
′

 (4-26) 

where λ = wavelength of light, 
 D = diameter of pinhole, and 
 Z′ = aperture-to-screen distance 

Figure 4-20  Fraunhofer diffraction pattern for a circular aperture 
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Rectangular aperture 

 
 
Half-angle beam divergences to first minimum in x and y directions: 

 θ
λ

θ
λ

1 2 1 2/ /b g b gx
x

y
yd d

= = and   (4-27) 

Half-widths of central bright fringe in x and y directions: 

 x
Z
d

y
Z
dx y

1 1=
′

=
′ 

 and 
 λ λ

 (4-28) 

Figure 4-21  Fraunhofer diffraction pattern for a rectangular aperture 

C.  Diffraction Grating 
If we prepare an aperture with thousands of adjacent slits, we have a so-called transmission-
diffraction grating. The width of a single slit—the opening—is given by d, and the distance 
between slit centers is given by (see Figure 4-22). For clarity, only a few of the thousands of slits 
normally present in a grating are shown. Note that the spreading of light occurs always in a 
direction perpendicular to the direction of the long edge of the slit opening—that is, since the long 
edge of the slit opening is vertical in Figure 4-22, the spreading is in the horizontal direction—
along the screen. 
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Figure 4-22  Diffraction of light through a grating under Fraunhofer conditions 

The resulting diffraction pattern is a series of sharply defined, widely spaced fringes, as shown. 
The central fringe, on the symmetry axis, is called the zeroth-order fringe. The successive 
fringes on either side are called lst order, 2nd order, etc., respectively. They are numbered 
according to their positions relative to the central fringe, as denoted by the letter p. 

The intensity pattern on the screen is a superposition of the diffraction effects from each slit as 
well as the interference effects of the light from all the adjacent slits. The combined effect is to 
cause overall cancellation of light over most of the screen with marked enhancement over only 
limited regions, as shown in Figure 4-22. The location of the bright fringes is given by the 
following expression, called the grating equation, assuming that Fraunhofer conditions hold. 

 (sin α + sin θp) = pλ where p = 0, ±1, ±2, …  (4-29) 
 

where  = distance between slit centers 
 α = angle of incidence of light measured with respect to the normal to the grating 

surface 
 θp = angle locating the pth-order fringe 
 p = an integer taking on values of 0, ±1, ±2, etc. 
 λ = wavelength of light 
Note that, if the light is incident on the grating along the grating normal (α = 0), the grating 
equation, Equation 4-29, reduces to the more common form shown in Equation 4-30. 

 (sin θp) = pλ  (4-30) 
 

If, for example, you shine a HeNe laser beam perpendicularly onto the surface of a transmission 
grating, you will see a series of brilliant red dots, spread out as shown in Figure 4-22. A 
complete calculation would show that less light falls on each successively distant red dot or 
fringe, the p = 0 or central fringe being always the brightest. Nevertheless, the location of each 
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bright spot, or fringe, is given accurately by Equation 4-29 for either normal incidence (α = 0) 
or oblique incidence (α ≠ 0). If light containing a mixture of wavelengths (white light, for 
example) is directed onto the transmission grating, Equation 4-29 holds for each component 
color or wavelength. So each color will be spread out on the screen according to Equation 4-29, 
with the longer wavelengths (red) spreading out farther than the shorter wavelengths (blue). In 
any case, the central fringe (p = 0) always remains the same color as the incident beam, since all 
wavelengths in the p = 0 fringe have θp = 0, hence all overlap to re-form the “original” beam 
and therefore the original “color.” Example 9 shows calculations for a typical diffraction grating 
under Fraunhofer conditions. 

Example 9 

Michael has been handed a transmission grating by his supervisor who wants to know how widely 
the red light and blue light fringes—in second order—are separated on a screen one meter from the 
grating. Michael is told that the separation distance between the red and blue colors is a critical 
piece of information needed for an experiment with a grating spectrometer. The transmission grating 
is to be illuminated at normal incidence with red light at λ = 632.8 nm and blue light at λ = 420.0 
nm. Printed on the frame surrounding the ruled grating, Michael sees that there are 5000 slits (lines) 
per centimeter on this grating. Michael decides he must, in turn: 
(a)  Determine the distance  between the slit centers. 

(b)  Determine the angular deviation θp in 2nd order for both the red and the blue light. 

(c)  Determine the separation distance on the screen between the red and blue fringes. 

Solution: 
(a)  Since there are 5000 slits or grooves per centimeter, Michael knows that the distance  between 

the slits, center to center, must be  = 
1 cm
5000

2 10 cm4= × − . 

(b)  At normal incidence (α = 0), Equation 4-29 reduces to Equation 4-30, so, for 2nd order (p = 2), 
Michael writes the following two equations and solves them for the deviation angles θ2

red  and 

θ2
blue: 

sinθ
λ

2

9

6

2 632.8 10

2 10
0.6328red redp

= =
×

×
=

( ) −

−

m

m

c h
 

∴ = = °− )θ2
1 0 6328 39 3red sin . .a  

sinθ
λ

2

9

6

2 420 10

2 10
0.4200blue bluep

= =
×

×
=

( ) −

−

m

m

c h
 

∴ = = °− )θ2
1 0 4200 24 8blue sin . .a  

(c)  From the geometry shown in Figure 4-22, Michael sees that the screen distances y2
red and y2

blue
 

to the red and blue fringes in 2nd order respectively, and the grating-to-screen distance Z′ are related 
to deviation angles by the equation 

tan θ2 = 
y

Z
2

′
, where here, Z′ = 1 meter. 
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Thus 

∆y y y Z Zred blue red blue= − = ′ − ′2 2 2 2tan tanθ θc h c h 
which becomes 

∆y = (1 m) (tan 39.3° − tan 24.8°) 

∆y = (100 cm) (0.8185 − 0.4621) 

∆y = 35.6 cm 

Michael reports his finding of ∆y = 35.6 cm to his supervisor, who decides that this grating will 
work in the proposed experiment. 

 

D.  Diffraction-Limited Optics 
A lens of diameter D is in effect a large circular aperture through which light passes. Suppose a 
lens is used to focus plane waves (light from a distant source) to form a “spot” in the focal plane 
of the lens, much as is done in geometrical optics. Is the focused spot truly a point? Reference 
to Figure 4-20 indicates that the focused spot is actually a tiny diffraction pattern—with a bright 
disk at the center (the so-called airy disk) surrounded by dark and bright rings, as pictured 
earlier in Figure 4-13a. 

In Figure 4-23, we see collimated light incident on a lens of focal length f. The lens serves as 
both a circular aperture of diameter D to intercept the plane waves and a lens to focus the light 
on the screen, as shown in Figure 4-18b. Since the setup in Figure 4-23 matches the conditions 
shown in Figure 4-18b, we are assured that a Fraunhofer diffraction pattern will form at the 
“focal spot” of the lens. 

 

Figure 4-23  Fraunhofer diffraction pattern formed in the focal plane of a lens of focal length f 
(Drawing is not to scale.) 

The diffraction pattern is, in truth then, an array of alternate bright and dark rings, with a bright 
spot at the center, even though the array is very small and hardly observable to the human eye. 
From the equations given with Figure 4-20, we see that the diameter of the central bright spot—
inside the surrounding rings—is itself of size 2R, where, from Equation 4-26, 

 
2 2 1 22R Z

D
=

′F
HG

I
KJ

. λ  
 

(4-31) 

 

where Z′ = f 
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While indeed small, the diffraction pattern overall is greater than 2R, demonstrating clearly that 
a lens focuses collimated light to a small diffraction pattern of rings and not to a point. 
However, when the lens is inches in size, we do justifiably refer to the focal plane pattern as a 
“point,” ignoring all structure within the “point.” Example 10 provides us with a “feel” for the 
size of the structure in the focused spot, when a lens of nominal size becomes the circular 
aperture that gives rise to the airy disk diffraction pattern. 

Example 10 

Determine the size of the airy disk at the center of the diffraction pattern formed by a lens such as 
that shown in Figure 4-23, if the lens is 4 cm in diameter and its focal length is 15 cm. Assume a 
wavelength of 550 nm incident on the lens. 

Solution: Using Equation 4-31 with Z′ = f, the diameter of the airy disk is  

2
2.44 2.44 550 10 0.15

0.04

9

R
f

D
= =

×( ) ( )−
λ m  m

m

c h
 

2R = 5.03 × 10−6 m 

Thus, the central bright spot (airy disk) in the diffraction pattern is only 5 micrometers in diameter. 
So, even though the focused spot is not a true point, it is small enough to be considered so in the 
world of large lenses, i.e., in the world of geometrical optics. 

The previous discussion and example indicate that the size of the focal spot—structure and all—is 
limited by diffraction. No matter what we do, we can never make the airy disk smaller than that 

given by 2R = 
2 44. f

D
 λ

. That is the limit set by diffraction. So all optical systems are limited by 

diffraction in their ability to form true point images of point objects. We recognize this when we 
speak of diffraction-limited optics. An ideal optical system therefore can do no better than that 
permitted by diffraction theory. In fact, a real optical system—which contains imperfections in the 
optical lenses, variations in the index of refraction of optical components, scattering centers, and the 
existence of temperature gradients in the intervening atmosphere—will not achieve the quality limit 
permitted by diffraction theory. Real optical systems are therefore poorer than those limited by 
diffraction only. We often refer to real systems as many-times diffraction limited and sometimes 
attach a numerical figure such as “five-times diffraction-limited” to indicate the deviation in quality 
expected from the given system compared with an ideal “diffraction-limited” system. 

 

V.  POLARIZATION 
We continue our discussion of the main concepts in physical optics with a brief look at 
polarization. Before we describe the polarization of light waves, let’s take a look at a 
simplistic—but helpful—analogy of “polarization” with rope waves. 
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A.  Polarization—a simple analogy 
Imagine a “magic” rope that you can whip up and down at one end, thereby sending a 
transverse “whipped pulse” (vibration) out along the rope. See Figure 4-24a. Imagine further 
that you can change the direction of the “whipped shape,” quickly and randomly at your end, so 
that a person looking back along the rope toward you, sees the “vibration” occurring in all 
directions—up and down, left to right, northeast to southwest, and so on, as shown in 
Figure 4-24b. 

 

Figure 4-24  Rope waves and polarization 

In Figure 4-24a, the rope wave is linearly polarized, that is, the rope vibrates in only one 
transverse direction—vertically in the sketch shown. In Figure 4-24b, the rope vibrations are in 
all transverse directions, so that the rope waves are said to be unpolarized. 

Now imagine that the waves on the rope—representing all possible directions of vibration as 
shown in Figure 4-24b—are passed through a picket fence. Since the vertical slots of the fence 
pass only vertical vibrations, the many randomly oriented transverse vibrations incident on the 
picket fence emerge as only vertical vibrations, as depicted in Figure 4-25. In this example of 
transverse waves moving out along a rope, we see how we can—with the help of a polarizing 
device, the picket fence in this case—change unpolarized rope waves into polarized rope waves. 

 

Figure 4-25  Polarization of rope waves by a picket fence 
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B.  Polarization of light waves 
The polarization of light waves refers to the transverse direction of vibration of the electric field 
vector of electromagnetic waves. (Refer back to Figure 4-3.) As described earlier, transverse 
means E-field vibrations perpendicular to the direction of wave propagation. If the electric field 
vector remains in a given direction in the transverse x-y plane—as shown in Figure 4-26—the 
light is said to be linearly polarized. (The “vibration” of the electric field referred to here is not 
the same as a physical displacement or movement in a rope. Rather, the vibration here refers to 
an increase and decrease of the electric field strength occurring in a particular transverse 
direction—at all given points along the propagation of the wave.) Figure 4-26 shows linearly 
polarized light propagating along the z-direction toward an observer at the left. The electric field 
E increases and decreases in strength, reversing itself as shown, always along a direction 
making an angle θ with the y-axis in the transverse plane. The E-field components Ex = E sin θ 
and Ey = E cos θ are shown also in the figure. 

 

Figure 4-26  Linearly polarized light with transverse electric field E propagating along the z-axis 

Table 1 lists the symbols used generally to indicate unpolarized light (E-vector vibrating 
randomly in all directions), vertically polarized light (E-vector vibrating in the vertical direction 
only), and horizontally polarized light (E-vector vibrating in the horizontal direction only). With 
reference to Figure 4-26, the vertical direction is along the y-axis, the horizontal direction along 
the x-axis. 
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Table 4-1  Standard Symbols for Polarized Light 

Viewing Position Unpolarized 
Vertically  
Polarized 

Horizontally 
Polarized 

Viewed head-on; 
beam coming toward 
viewer 

  
 

Viewed from the side; 
beam moving from 
left to right    

 

Like the action of the picket fence described in Figure 4-25, a special optical filter—called 
either a polarizer or an analyzer depending on how it’s used—transmits only the light wave 
vibrations of the E-vector that are lined up with the filter’s transmission axis—like the slats in 
the picket fence. The combined action of a polarizer and an analyzer are shown in Figure 4-27. 
Unpolarized light, represented by the multiple arrows, is incident on a “polarizer” whose 
transmission axis (TA) is vertical. As a result, only vertically polarized light emerges from the 
polarizer. The vertically polarized light is then incident on an “analyzer” whose transmission 
axis is horizontal, at 90° to the direction of the vertically polarized light. As a result, no light is 
transmitted. 

 

Figure 4-27 Effect of polarizers on unpolarized light 

C.  Law of Malus 
When unpolarized light passes through a polarizer, the light intensity—proportional to the 
square of its electric field strength—is reduced, since only the E-field component along the 
transmission axis of the polarizer is passed. When linearly polarized light is directed through a 
polarizer and the direction of the E-field is at an angle θ to the transmission axis of the 
polarizer, the light intensity is likewise reduced. The reduction in intensity is expressed by the 
law of Malus, given in Equation 4-32. 
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 I = I0 cos2 θ  
(4-32) 

 

where I = intensity of light that is passed through the polarizer 

 I0 = intensity of light that is incident on the polarizer 

 θ = angle between the transmission axis of the polarizer and the direction of the E-field 
vibration 

Application of the law of Malus is illustrated in Figure 4-28, where two polarizers are used to 
control the intensity of the transmitted light. The first polarizer changes the incident unpolarized 
light to linearly polarized light, represented by the vertical vector labeled E0. The second 
polarizer, whose TA is at an angle θ with E0, passes only the component E0 cos θ, that is, the 
part of E0 that lies along the direction of the transmission axis. Since the intensity goes as the 
square of the electric field, we see that I, the light intensity transmitted through polarizer 2, is 
equal to (E0 cos)2, or I = E0

2 cos2. Since E0
2 is equal to I0, we have demonstrated how the law of 

Malus (I = I0 cos2 θ) comes about. 

We can see that, by rotating polarizer 2 to change θ, we can vary the amount of light passed. 
Thus, if θ = 90° (TA of polarizer 1 is 90° to TA of polarizer 2) no light is passed, since 
cos 90° = 0. If θ = 0° (TA of polarizer 1 is parallel to TA of polarizer 2) all of the light is 
passed, since cos 0° = 1. For any other θ between 0° and 90°, an amount I0 cos2 θ is passed. 

 

Figure 4-28  Controlling light intensity with a pair of polarizers 

Example 11 shows how to use the law of Malus in a light-controlling experiment. 

Example 11 

Unpolarized light is incident on a pair of polarizers as shown in Figure 4-28. 
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(a) Determine the angle θ required—between the transmission axes of polarizers 1 and 2—that 
will reduce the intensity of light I0 incident on polarizer 2 by 50%. 

(b) For this same reduction, determine by how much the field E0 incident on polarizer 2 has been 
reduced. 

Solution: 
(a) Based on the statement of the problem, we see that I = 0.5 I0. By applying the law of Malus, we 
have: 

 I = I0 cos2 θ 

 0.5 I0 = I0 cos2 θ 

 cos θ = 0 5.  = 0.707 

 θ = 45° 

 So the two TAs should be at an angle of 45° with each other. 

(b) Knowing that the E-field passed by polarizer 2 is equal to E0 cos θ, we have 

 E2 = E0 cos θ 

 E2 = E0 cos 45° 

 E2 = 0.707 E0 ≅ 71% E0 

 Thus, the E-field incident on polarizer 2 has been reduced by about 29% after passing through 
polarizer 2. 

 

D.  Polarization by reflection and Brewster’s angle 
Unpolarized light—the light we normally see around us—can be polarized through several 
methods. The polarizers and analyzers we have introduced above polarize by selective 
absorption. That is, we can prepare materials—called dichroic polarizers—that selectively 
absorb components of E-field vibrations along a given direction and largely transmit the 
components of the E-field vibration perpendicular to the absorption direction. The perpendicular 
(transmitting) direction defines the TA of the material. This phenomena of selective absorption 
is what E. H. Land discovered in 1938 when he produced such a material—and called it 
Polaroid. 

Polarization is produced also by the phenomenon of scattering. If light is incident on a 
collection of particles, as in a gas, the electrons in the particles absorb and reradiate the light. 
The light radiated in a direction perpendicular to the direction of propagation is partially 
polarized. For example, if you look into the north sky at dusk through a polarizer, the light 
being scattered toward the south—toward you—is partially polarized. You will see variations in 
the intensity of the light as you rotate the polarizer, confirming the state of partial polarization 
of the light coming toward you. 

Another method of producing polarized light is by reflection. Figure 4-29 shows the complete 
polarization of the reflected light at a particular angle of incidence B, called the Brewster angle. 
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Figure 4-29  Polarization by reflection at Brewster’s angle 

The refracted light on the other hand becomes only partially polarized. Note that the symbols 
introduced in Table 4-1 are used to keep track of the different components of polarization. One 
of these is the dot (•) which indicates E-field vibrations perpendicular to both the light ray and 
the plane of incidence, that is, in and out of the paper. The other is an arrow (↔) indicating 
E-field vibrations in the plane of incidence and perpendicular to the ray of light. The reflected 
E-field coming off at Brewster’s angle is totally polarized in a direction in and out of the paper, 
perpendicular to the reflected ray. This happens only at Brewster’s angle, that particular angle 
of incidence for which the angle between the reflected and refracted rays, B + β, is exactly 90°. 
At the angle of incidence B, the E-field component (↔) cannot exist, for if it did it would be 
along the reflected ray, violating the requirement that E-field vibrations must always be 
transverse—that is, perpendicular to the direction of propagation. Thus, only the E-field 
component perpendicular to the plane of incidence (•) is reflected. 

Referring to Figure 4-29 and Snell’s law at the Brewster angle of incidence, we can write: 

n1 sin B = n2 sin β 

Since β + B = 90°, β = 90 − B, which then allows us to write 

n1 sin B = n2 sin (90 – B) = n2 cos B 

or sin 
cos 

B
B

 = n
n

2

1
 

and finally  
 tan B = n

n
2

1
  (4-33) 

 
Equation 4-33 is an expression for Brewster’s law. Knowing n1 (the refractive index of the 
incident medium) and n2 (the refractive index of the refractive medium), we can calculate the 
Brewster angle B. Shining light on a reflecting surface at this angle ensures complete 
polarization of the reflected ray. We make use of Equation 4-33 in Example 12. 
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Example 12 

In one instance, unpolarized light in air is to be reflected off a glass surface (n = 1.5). In another 
instance, internal unpolarized light in a glass prism is to be reflected at the glass-air interface, where 
n for the prism is also 1.5. Determine the Brewster angle for each instance. 

Solution: 
(a) Light going from air to glass. In this case, n1 = 1 and n2 = 1.5. 

 Using Equation 4-33 

tan B = 
n
n

2

1
=

1 5
1
.

 

B = tan−1 1.5 = 56.3° 

 The Brewster angle is 56.3°. 

(b) Light going from glass to air: In this case, n1 = 1.5 and n2 = 1.0. 

 Then,    tan B = n
n

2

1

1
1.5

0.667= =  

B = tan−1 (0.667) = 33.7° 

 The Brewster angle is 33.7°. 

 

E.  Brewster windows in a laser cavity 
Brewster windows are used in laser cavities to ensure that the laser light—after bouncing back 
and forth between the cavity mirrors—emerges as linearly polarized light. Figure 4-30 shows 
the general arrangement of the windows—thin slabs of glass with parallel sides—mounted on 
the opposite edges of the gas laser tube—in this case a helium-neon gas laser. 

 

Figure 4-30  Brewster windows in a HeNe gas laser 

As you can see, the light emerging is linearly polarized in a vertical direction. Why this is so is 
shown in detail in Figure 4-31. Based on Figure 4-29 and Example 12, Figure 4-31 shows that it 
is the refracted light—and not the reflected light—that is eventually linearly polarized. 
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Figure 4-31  Unpolarized light passing through both faces at a Brewster angle 

The unpolarized light at A is incident on the left face of the window—from air to glass—
defining, as in Example 12, a Brewster angle of 56.3°. The reflected light at B is totally 
polarized and is rejected. The refracted (transmitted) light at C is now partially polarized since 
the reflected light has carried away part of the vibration perpendicular to the paper (shown by 
the dots). At the right face, the ray is incident again at a Brewster angle (34°) for a glass-to-air 
interface—as was shown in Example 12. Here again, the reflected light, totally polarized, is 
rejected. The light transmitted through the window, shown at D, now has even less of the 
vibration perpendicular to the paper. After hundreds of such passes back and forth through the 
Brewster windows, as the laser light bounces between the cavity mirrors, the transmitted light is 
left with only the vertical polarization, as shown exiting the laser in Figure 4-30. And since all 
of the reflected light is removed (50% of the initial incident light) we see that 50% of the initial 
incident light remains in the refracted light, hence in the laser beam. 
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Laboratory 
In this laboratory you will complete the following experiments: 

• Carry out a quantitative mapping of the intensity variation across a Fraunhofer airy-
diffraction pattern. 

• Determine the wavelength of light by using a machinist’s rule as a reflection grating. 

• Convert unpolarized light to polarized light by reflection at Brewster’s angle. 

Equipment List 
The following equipment is needed to complete this laboratory. 

1 HeNe laser (unpolarized, TEM00 output, 1–3-mW range, 632.8 nm) 

1 diode laser pointer (5 mW or less) 

1 precision pinhole aperture (150-µm diameter) 

1 photomultiplier with fiber optic probe 

1 linear translator capable of transverse motion in 0.1-mm increments 

2 optical benches, calibrated, 2 meters long 

3 bench mounts with vertical rods 

2 laboratory jacks 

1 neutral-density filter 

1 632.8-nm filter 

2 H-type Polaroid sheet mounts with TAs identified 

1 diffuser (ground glass plate) 

1 reflecting glass plate (microscope slide) 

1 machinist’s rule, marked off in 64ths of an inch 

Procedure 

A. Quantitative mapping of airy diffraction pattern 
 1. Set up the equipment as shown in Figure L-1. With the help of Equation 4-22, determine 

the pinhole-to-screen distance Z′ to ensure the formation of a Fraunhofer airy-diffraction 
pattern of the 150-µm hole at the “screen” (see Example 8). Set the pinhole-to-screen 
distance accordingly. 
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Figure L-1  Arrangement of apparatus for recording intensity distribution of Fraunhofer diffraction 
pattern from a circular pinhole 

 2. With room lights off, align the laser, 150-µ pinhole, and the tip of the fiber optic probe so 
that the laser beam becomes the axis of symmetry for each component. Use a 5" × 8" 
index card to observe the airy pattern in front of the fiber optic probe (the virtual location 
of the “screen”), ensuring that clear, sharp airy disk and set of concentric rings are 
formed. Adjust the positions of the laser pinhole and fiber optic tip relative to one another 
to obtain a maximum intensity reading at the center of the airy disk. (Be patient!) Note 
that a 632.8-nm filter is added near the fiber optic tip to let you work with room lights on. 
The neutral-density filter shown in Figure L1 may be used—if necessary—as an additional 
intensity control, to permit scanning the entire airy pattern without a scale change on the 
photometer. 

 3. After the laser beam, 150-µm pinhole, and fiber optic tip have been carefully aligned and 
the 632.8-nm filter is in place, turn on the lights and take intensity readings. With the 
horizontal translator, move the fiber optic tip assembly back and forth, transversely across 
the optical bench (and the Fraunhofer diffraction pattern) several times. Watch the 
photometer to ensure that the alternate maxima and minima of intensity in the airy pattern 
are being detected. 

 4. During the trial runs, choose sensitivity and scale factor settings on the photometer so that 
the highest readings remain on scale while the lowest readings are still clearly recorded. 
When you get satisfactory variations in the photometer readings as the fiber optic tip is 
scanned across the airy pattern, you can begin to record readings of intensity versus 
position. Try to obtain, at the very least, intensity variations across the center disk and two 
of the adjoining rings. (The pinhole-to-screen distance may have to be reduced to around 
100 cm to ensure that the translator scan encompasses the desired extent of the airy 
pattern. In that event, the pattern may be in the near field rather than the far field and the 
equation given in Figure 4-20 may not hold exactly—but it will be close enough.) 
Readings can be taken every 0.5 mm or so, beginning with the second ring, moving on 
through the central disk and on to the second ring on the opposite side. Record the 
photometer readings versus position and plot them on suitable graph paper. 

 5. Compare the intensity distribution with that shown qualitatively in Figure 4-20. Since the 
pinhole diameter, wavelength, and pinhole-to-screen distance are all known for the plot, 
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measure the radius of the central airy disk on the plot and compare this result with that 
predicted by Equation 4-26. 

B. Determine the wavelength of light with a reflection grating 
 1. To perform this experiment you need only a diode laser pointer, a mount for the laser that 

allows it to tilt downward, a solid table on which to position the laser mount and the 
machinist’s rule, and a wall (screen), five to fifteen feet from the rule. Figure L-2 shows 
the general setup. Choose an appropriate angle α to form a clear diffraction pattern on the 
wall, locating several orders y1, y2… yp, as shown in Figure L-2. 

 

Figure L-2  Using the grooves on a machinist’s rule as a reflection grating 

 2. In Figure L-2, the symbols shown are: 

   γ = slant angle laser beam makes with the grating (rule) surface 

   α = angle of incidence of laser beam with grating normal 

   θp = the direction angle to the pth diffraction order, measured relative to the normal 

   β0 = γ = angle of laser beam reflected from rule, relative to the surface 

   βp = diffraction angle to the pth diffraction order, measured relative to the surface 

    = “grating” spacing between adjacent grooves on the rule 

   x0 = distance from center of rule to the wall (or screen) 

  Locate on the wall the reflected beam (at +y0) and the diffraction orders y1, y2, y3… yp. 
The point (−y0) locates the spot formed by the laser beam if it had gone through the rule 
directly onto the wall. The point +y0 locates the point of specular reflection of the laser 
beam off of the rule surface. The O position is the halfway point between +y0 and −y0. 

 3. If you begin with Equation 4-29 and adjust for sign conventions (since α and θp are on 
opposite sides of the normal for a reflection grating) you obtain the modified equation, 

  pλ =  (sin θp − sin α) 
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  From the geometry in Figure L-2 and a series of substitutions and approximations for 
sin θp and sin α, you arrive eventually at a useful working equation for λ that involves 
only , p, yp, y0, and x0, each directly measurable, as seen in Figure L-2. This equation is  

  λ =
L
N
MM

O
Q
PP2

2
0

2

0
2p

y y

x
p –

 

 4. Obtain values for several measures of yp and use the above equation for each measure to 
determine the wavelength λ of the diode laser. Take the average for your best value of λ. 
Knowing the true wavelength, determine how close your measured value comes. Express 
the deviation as a percent. 

C. Conversion of unpolarized light to linearly polarized light 
 1. Using light from an unpolarized HeNe or diode laser, arrange your system as shown in 

Figure L-3. The incident unpolarized light passes through a diffuser—such as a ground 
glass plate—and on toward the reflecting surface (microscope slide). The light reflects off 
the glass surface and then passes through an analyzer on its way toward the observer. 
When the reflecting glass surface is rotated around a vertical axis so that the angle of 
incidence is equal to Brewster’s angle—about 56°—the reflected light is found to be 
totally polarized with the E-vector perpendicular to the plane of incidence. (Recall that the 
plane of incidence is the plane that contains the incident ray and the normal to the 
reflecting surface. In Figure L-3, therefore, the plane of incidence is horizontal—parallel 
to the tabletop. 

 

Figure L-3  Polarization by reflection at Brewster’s angle 
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 2. With the appropriate analyzer, whose transmission axis (TA) is known, verify that the 
light reflecting from the surface of the glass microscope slide is indeed vertically 
polarized, as indicated in Figure L-3. Explain your method of verification. 

Other Resources 
• The Education Council of the Optical Society of America (OSA) has prepared a 

discovery kit designed to introduce students to modern optical science and engineering. 
The kit includes two thin lenses, a Fresnel lens, a mirror, a hologram, an optical illusion 
slide, a diffraction grating, one meter of optical fiber, two polarizers, four color filters, 
and instructions for eleven detailed experiments. OSA offers teacher membership 
opportunities. Contact the Optical Society of America, 2010 Massachusetts Avenue, 
NW, Washington, D.C. 20036, 800-762-6960. 

• Atneosen, R., and R. Feinberg. “Learning Optics with Optical Design Software,” 
American Journal of Physics, Vol 59, March 1991: pp 242-47. 

• “Teaching Optics With an O/H Projector,” Douglas S. Goodman, Polaroid Corporation, 
38 Henry Street, Cambridge, Massachusetts. 

• K-12 Optics Outreach kit—available from SPIE, Bellingham, Washington. 
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Problem Exercises 
 1. A HeNe laser in air emits light at 

632.8 nanometers. The beam passes into a 
glass substance of index 1.35. What are 
the speed, wavelength, and frequency of 
the laser light in the glass substance? 

 

 2. Use the principle of superposition to 
sketch a picture of the resultant waveform 
for the two waves shown at the right. Does 
the resultant wave ever reach an amplitude 
of 2A? 

 

 3. A Young’s double-slit interference 
experiment is carried out with blue-green 
argon laser light. The interference pattern 
formed on a screen 3.3 m away contains the 
first-order (m = 1) bright fringe 3.4 mm from 
the center of the pattern. If the separation of 
the double slits is 0.50 mm, what is the 
wavelength of the argon laser light? 
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 4. Suppose you are asked to design a nonreflecting 
surface for a Stealth aircraft. Your goal is to 
select an antireflective polymer of index 1.6 and 
of optimum thickness, so that radar waves of 
wavelength λ = 3.5 cm will not be reflected from 
the aircraft surface. What is the thinnest layer of 
polymer you can apply to achieve your goal? 

 
 

 5. Solar cells made of silicon (Si) are designed 
with nonreflecting, thin-film coatings such as 
silicon monoxide (SiO) to minimize the 
reflection of incident light. Determine the 
thickness of the thinnest film of SiO that will 
cause the least reflection of sunlight. Take the 
average wavelength of sunlight to be near 
550 nanometers. 

 
 

 6. An oil spill on an ocean coastline near you 
produces an oil slick on the water for miles 
around. After a few days, you take a 
helicopter ride out over the water and 
notice—with the help of a handheld 
spectrometer—that the oil slick produces a 
first-order maximum of reflected light of 
wavelength 550 nanometers. What is the 
thickness of the oil slick at that time? Assume 
the oil has n = 1.25 and saltwater has 
n = 1.34.  

 

 7. A laser beam of unknown wavelength is incident on a single slit of width 0.25 mm and 
forms a Fraunhofer diffraction pattern on a screen 2.0 m away. The width of the central 
bright fringe is measured to be about 7 mm. What is the wavelength of the laser light? 
What might the laser be? 

 

 8. A thin layer of liquid (methylene iodide) is 
sandwiched between two glass microscope slides, 
as shown in the accompanying sketch. Light of 
wavelength λ = 550 nm is incident on the glass-
liquid interface. The liquid has an index of 
refraction of n = 1.76. (a) Is there an automatic  

 

  phase shift of λ/2 for the light reflected at the top face of the liquid film? (b) Is there an 
automatic phase shift of λ/2 for the light reflected at the bottom of the film? (c) What is 
the minimum thickness of liquid film required if the light incident perpendicularly on the 
sandwich is to be strongly reflected? 
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 9. Nearly plane waves of C02 laser light of wavelength λ = 10.6 µm emerge from a circular 
aperture 10 cm in diameter. If the C02 laser light is to be examined on a target in the far 
field, about how far from the aperture should this examination take place? 

 

 10. Refer to Figure 4-20, which shows a Fraunhofer diffraction pattern for a circular aperture. 
If the aperture is of diameter 150 µm and a helium-cadmium laser of wavelength 
λ = 442 nm is used to illuminate the aperture, determine (a) an approximate far-field 
distance from aperture to screen for a Fraunhofer pattern, (b) the half-angle beam 
divergence of the laser beam in the far field, and (c) the radius of the airy disk on the 
screen. 

 

 11. If one were to send a laser beam of wavelength 694 nm through a telescope aperture of 
diameter 2.5 meters on toward the moon, 3.84 × 105 km away, what would be the 
diameter of the laser beam when it hit the moon’s surface? 

 

 12. What is the angular separation in second order between light of wavelength 400 nm and 
700 nm when the light is incident normally (perpendicularly) on a diffraction grating of 
5000 grooves/cm? 

 

 13. Vertically polarized light of intensity I0 is 
incident on a polarizer whose TA makes an 
angle of 30° with the vertical. The light then 
passes through a second polarizer whose TA 
makes an angle of 90° with the vertical, as 
shown in the sketch. (a) What is the intensity 
of the light, in terms of I0 , that passes through 
the second polarizer? (b) What is its 
orientation? 
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 14. A submarine floating on 
the ocean (n = 1.34) 
transmits a message to a 
receiver on a 100-m high 
cliff located at the 
coastline. The submarine’s 
antenna extends 5.5 m 
above the ocean surface. 
(a) If the transmitted 
signal is completely 
polarized by reflection 
from the ocean surface, 
how far must the 
submarine’s antenna be 
from the coastline? 
(b) Relative to the ocean 
surface, what is the 
direction of polarization of 
the polarized signal? 

 

 15. Figure 4-30 shows the two Brewster 
windows tilted toward one another, each 
at the appropriate angle with the 
horizontal. See sketch (a). What would be 
gained or lost by having the windows 
parallel to each other, as in sketch (b)? 
Hint: Use your knowledge of Snell’s law 
to draw a center ray completely through 
both windows from M1 to M2. Use 
Figure 4-31 to help with details at each 
window. What happens to the center ray 
for each sketch? 
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