SOLID STATE LASERS Tunable Sources and Passive Q-Switching Elements

SOLID STATE LASERS Tunable Sources and Passive Q-Switching Elements

Yehoshua Kalisky

SPIE PRESS Bellingham, Washington USA Library of Congress Control Number Data

Kalisky, Yehoshua Y.
Solid state lasers: tunable sources and passive q-switching elements / Yehoshua Y. Kalisky.
pages cm
Includes bibliographical references and index.
ISBN 978-0-8194-9821-2
Solid-state lasers, I. Title.

2013957507

Published by

TA1705.K34 2014 621.36'61–dc22

SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 Email: spie@spie.org Web: http://spie.org

Copyright © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing To Ofra Tomer Efrat Itai Aminadav

Table of Contents

Preface List of Abbreviations and Acronyms			xi xiii	
1	Elements of Light–Matter Interaction			
	1.1	Introduction	1	
	1.2	Absorption and Emission Processes	1	
	1.3	Classical Model of Absorption and Emission Processes	5	
	1.4	Other Models: A Brief Summary	13	
	1.5	Homogeneous and Nonhomogeneous Broadening	16	
	Refe	rences	19	
2	Basic	Concepts in Atomic Spectroscopy	21	
	2.1	Rare Earth Ions	21	
	2.2	Crystal-Field Theory: Basic Concepts	28	
		2.2.1 Mixing LS states	32	
	2.3	More on Crystal-Field Effects	34	
		2.3.1 Weak crystal field	34	
		2.3.2 Intermediate and strong fields	36	
	2.4	Electronic Transition Probabilities	36	
		2.4.1 Selection rules	38	
	2.5	Calculating the Electronic Energy Levels of Rare Earth lons	41	
	2.0	2.5.1 Spin–orbit coupling	43 44	
	2.6	Energy Levels of Rare Earth lons rences	44 47	
3	Spect	roscopic Properties of Cr ³⁺ and Cr ⁴⁺ lons	49	
	3.1	General Concepts	49	
	3.2	Angular Momentum and Spectroscopic Terms	53	
	3.3	Optical Transitions and Selection Rules	56	
	3.4	Cr ³⁺ and Cr ⁴⁺ : Structure and Crystal Growth	61	
	3.5	External Effects on Laser Performance	64	
		3.5.1 Coordination	64	
		3.5.2 Crystal field	64	

		3.5.3	Crystal-field effect on Cr ³⁺	64	
		3.5.4	Crystal-field effect on Cr ⁴⁺	65	
	3.6	Nonra	diative Relaxation in a Chromium System	72	
		3.6.1	Temperature dependence	77	
	3.7	Summ	lary	80	
	Refe	rences		81	
4	Laser	Perfor	mance of Some Cr ⁴⁺ - and Cr ²⁺ -doped Hosts	85	
	4.1	Introdu	uction	85	
	4.2	Free-F	Running, Pulsed, or CW Operation Mode	87	
		4.2.1	Linear resonator	89	
		4.2.2	Folded resonator	90	
	4.3	4.3 Mode-Locked Ultrafast Lasers			
	4.4	Cr ²⁺ -b	ased Lasers	95	
		4.4.1	General properties	95	
		4.4.2	Advantages	96	
		4.4.3	Spectroscopy	97	
		4.4.4	Material and dopant characteristics	98	
		4.4.5	Performance	101	
	4.5	Summ	lary	102	
	Refe	rences		102	
5	Other	Tunab	le Sources	111	
	5.1	Ti:sap	phire (Ti:Al ₂ O ₃)	111	
		5.1.1	General background and introduction	111	
		5.1.2	Crystal growth	114	
			Optical and spectroscopic properties of Ti:Al ₂ O ₃	117	
		5.1.4	Laser performance	124	
		5.1.5	Modes of operation	126	
	5.2	Summ	lary	130	
	Refe	rences		130	
6	Other	Tunab	le Solid State Lasers: Cr ³⁺ - and Ce ³⁺ -doped Crystals	133	
	6.1	Introdu	uction	133	
	6.2	Spectroscopy and Structure			
	6.3	Gener	al Properties	139	
		6.3.1	Crystal growth	143	
	6.4		diative Processes	144	
	6.5		Performance	146	
		6.5.1	Operating modes	146	
			6.5.1.1 Q-switching and mode locking	148	
			6.5.1.2 Regenerative amplifier	151	
	6.6		le UV Lasers: Ce^{3+} :LiCaAlF ₆ and LiSAlF ₆	151	
		6.6.1	Introduction	151	
		6.6.2	Spectroscopy	152	
		6.6.3	Types of crystals	155	

		6.6.4	Types of lasers	157
		6.6.5	Laser properties and performance	158
		6.6.6	Other Ce ³⁺ systems	163
	6.7	Summ	hary	163
	Refe	rences		166
7	Passive Q-Switching			175
	7.1	Introdu	uction	175
	7.2	Satura	180	
	7.3	.3 Transmission Measurements		
	7.4	Excite	189	
	7.5	7.5 Passive Q-Switching Lasers		194
		7.5.1	Lamp-pumped lasers	194
			7.5.1.1 Introduction	194
			7.5.1.2 Examples of laser systems	194
		7.5.2	Diode-pumped systems: Nd-doped crystals	198
		7.5.3	Diode-pumped systems: Yb-doped crystals	202
	7.6	Other	Diode-Pumped Systems	205
		7.6.1	Composite systems	205
		7.6.2	Ceramic crystals	210
		7.6.3	Charge compensation	214
		7.6.4	Polarization effects	217
	7.7	Conclu	usion	224
	Refe	rences		224
In	dex			235

Preface

The possibility of controlling and continuously changing laser emission wavelengths in a wide spectral range without using external elements based on nonlinear optics (to shift the fundamental wavelength) is of primary importance to scientists. However, for years the tunable laser sources were based on liquid dye lasers, which provided only a limited solution to the demand for tunable sources due to their inherent limitations. Since that time there have been impressive advances in experimental and theoretical research in solid state physics, as well as in the optics and spectroscopic properties of solids. Quantum mechanical tools provided further insights into light-matter interaction, photophysical processes, elementary excitations, and host-dopant interactions. Combining those tools with advanced experimental techniques has yielded a means of observing and understanding the optical properties of active ions, such as rare earths and transition metals, and their potential as laser sources. A fundamental understanding of the mutual interactions between the *d* orbitals of transition-metal ions and the crystal field of various hosts, coupled with the effects of the crystallographic sites and crystalline symmetries, led to a better understanding of ion-host interaction.

Comprehension of the basic spectroscopic and crystallographic properties allowed for the prediction and engineering of new tunable solid state lasers by adjusting the crystal field of a large number of crystalline hosts according to the desired spectral range, from the UV (Ce^{3+} -doped crystals) into the visible mid-IR (Cr^{3+} - and Cr^{4+} -doped hosts). With the advent of novel high-power pumping sources, it became possible to design and operate a new class of tunable solid state laser devices for various applications.

This book is a continuation and a companion volume to my previous book *The Physics and Engineering of Solid State Lasers* (SPIE Press, 2006), and it provides an updated overview of tunable solid state lasers and passive Q-switches based on *d*-element ions. The main purpose of this monograph is to coherently demonstrate the design of new laser materials based on quantum mechanical principles, spectroscopic properties of transition-metal ions, and ion-host interaction. This approach includes the theory of the electronic structure of transition-metal ions, modeling of energy transfer and nonradiative processes, and symmetry considerations in the spectroscopic analysis of d orbitals. Each chapter features a list of references to support the data and encourage readers to extend their knowledge in the relevant subject.

Another aspect of the transition-metal-ion-doped crystals stems from the unique combination of optical and thermo-mechanical properties that makes them ideal candidates as passive Q-switching devices for Nd:YAG and Yb:YAG lasers. The theory, properties, design, and updated performance of passive Q-switched systems is presented and accompanied with recent advances and applications.

I would like to extend my gratitude to Dr. Gregory J. Quarles (Optoelectronics Management Network, United States) and Prof. David Titterton (DSTL, United Kingdom) for their illuminating remarks and advice. I am especially grateful to my wife, Dr. Ofra Kalisky, for her valuable comments, constant support, and inspiration. Last but not least, I would like to thank SPIE for promoting the idea of writing my second book that facilitates the understanding of *d*-element lasers and devices. By doing this, interested physicists and engineers can gain an integrated comprehension of lasers and laser technology, based on rare earth and transition-metal ions. I would particularly like to thank Tim Lamkins and Scott McNeill for their patience, flexibility, valuable comments, and continuous support.

> Yehoshua Kalisky Beer Sheva, Israel December 2013

List of Abbreviations and Acronyms

A B B	Einstein coefficient for spontaneous emission bulk modulus Einstein coefficient for stimulated transitions
BeAl ₂ O ₄	alexandrite
AR	antireflecting (coating)
at. %	atomic percent
BBO	β-barium borate
CNC	colloidal nanocrystals
CW	continuous wave
DPSSL	diode-pumped solid state laser
Dq	crystal-field-strength parameter
LuAG	lithium aluminum garnet
Ε	Young's modulus
ESA	excited-state absorption
FOM	figure of merit
FWHM	full width at half maximum
G	shear modulus
GdVO ₄	gadolinium vanadate
GGG	gadolinium gallium garnet
$g(\nu)$	spectral lineshape function
HEM	heat exchange method
Κ	segregation coefficient
KGW	$KGd(WO_4)_2$
KLM	Kerr-lens mode locking
KYW	$KY(WO_4)_2$
LiCAF	lithium calcium aluminum fluoride (LiCaAlF ₆)
LiSAF	lithium strontium aluminum fluoride (LiSrAlF ₆)
LiSGaF	lithium scandium gallium fluoride (LiSrGaAlF ₆)
LLF	LiLuF ₄
LS coupling	Russell–Saunders coupling
Μ	hardness, Moh

Mg ₂ SiO ₄	forsterite
ML	mode locking
< <i>n</i> >, <i>n</i> , <i>m</i>	phonon occupation number
NA	numerical aperture
R_T	thermal shock parameter
RTA	RbTiOAsO ₄
SA	saturable absorber
SESAM	semiconductor saturable absorption mirror
SHG	second harmonic generation
T_0	small-signal transmission of the saturable absorber
Ti:Al ₂ O ₃	titanium-doped sapphire
YAG	yttrium aluminum garnet (Y ₃ Al ₅ O ₁₂)
YLF	yttrium lithium fluoride (YLiF ₄)
YOS	Y_2SiO_5
YSGG	yttrium scandium gallium garnet
YVO_4	yttrium vanadate
Ζ	atomic number
ZGP	ZnGeP ₂
θ	strain
νp	Poisson's ratio
ρ(ν)	energy density per unit frequency
σ_a	absorption cross-section
σ_{ab}	absorption cross-section of a lasing center
σ_{eff}	effective cross-section of a saturable absorber
σ_{em}	emission cross-section of a lasing center
σ_{es}	excited-state absorption cross-section of a saturable absorber
σ_{esa}	excited-state absorption of a lasing center
σ_{gs}	ground-state absorption cross-section of a saturable absorber
$ au_{spon}$	spontaneous lifetime