UNDERSTANDING OPTICAL SYSTEMS

through Theory and Case Studies

UNDERSTANDING OPTICAL SYSTEMS

through Theory and Case Studies

Sijiong Zhang Changwei Li Shun Li

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Names: Zhang, Sijiong (Scientist), author. | Li, Changwei (Dr.), author. | Li, Shun (Scientist), author.

Title: Understanding optical systems through theory and case studies / Sijiong Zhang, Changwei Li, and Shun Li.

Description: Bellingham, Washington : SPIE Press, [2017] | Includes bibliographical references and index.

Identifiers: LCCN 2016053158 | ISBN 9781510608351 (softcover ; alk. paper) | ISBN 1510608354 (softcover ; alk. paper) | ISBN 9781510608368 (pdf) | ISBN 1510608362 (pdf) | ISBN 9781510608382 (Kindle) | ISBN 1510608389 (Kindle) | ISBN 9781510608375 (ePub) | ISBN 1510608370 (ePub)

Subjects: LCSH: Optics. | Optical instruments. | Imaging systems.

Classification: LCC QC355.3 .Z43 2017 | DDC 535-dc23 LC record available at https://lccn.loc.gov/2016053158

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the authors. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Cover image credit: iStock, Maxiphoto

Printed in the United States of America. First Printing. For updates to this book, visit http://spie.org and type "PM276" in the search field.

Contents

Prefa	Preface xiii					
I THE	I THEORY 1					
1 In	troduction to Light and Optical Systems	3				
1.	1 What Is Light?	3				
	1.1.1 Light as electromagnetic waves	4				
	1.1.2 Light as particles: photons	4				
	1.1.3 Wave-particle duality of light	6				
1.	2 How Do Light Sources Produce Light?	6				
	1.2.1 Explanation by electromagnetic wave theory	7				
	1.2.2 Explanation by quantum theory	7				
1.	3 Theories of Light: An Overview	9				
	1.3.1 Geometrical optics	9				
	1.3.2 Wave optics	10				
	1.3.3 Quantum optics	11				
1.	4 Overview of Optical Systems	12				
	1.4.1 What are optical systems?	12				
	1.4.2 Main types of optical systems	12				
	1.4.2.1 Optical imaging systems	12				
	1.4.2.2 Optical systems for energy collection	13				
R	eferences	15				
2 G	eometrical Optics	17				
2.	1 Definition of the Index of Refraction	19				
2.	2 Origin of the Index of Refraction	20				
2.	3 Reflection and Refraction of Light	21				
	2.3.1 Sign conventions	21				
	2.3.2 Laws of reflection and refraction	22				
	2.3.3 Total internal reflection	25				
	2.3.4 Dispersion of light	26				
2.	······································	27				
	2.4.1 Imaging concept	27				
	2.4.2 Cardinal points and planes in imaging systems	28				

		2.4.3 2.4.4	•	nd pupils in imaging systems seful formulas	33 36
		2.4.4		Object-image relationship	30
				Magnifications	37
				Lagrange invariant	39
			2.4.4.3	2.4.4.3.1 Lagrange invariant: an incarnation of the	39
				uncertainty principle in geometrical optics	40
	2.5	Raytra	cina	uncertainty principle in geometrical optics	40 41
	2.5	2.5.1	-	raytracing	41
		2.0.1		Matrix approach to paraxial raytracing	45
			2.5.1.2		48
			2.0.1.2	2.5.1.2.1 Single lenses	48
				2.5.1.2.2 Compound lenses	50
		2.5.2	Diffractio	on raytracing	51
	2.6		etrical Abe		53
	2.0	2.6.1		aberrations	54
			2.6.1.1		55
			2.6.1.2	-	57
				Astigmatism	58
				Curvature of field	59
			2.6.1.5	Distortion	60
		2.6.2	High-ord	er aberrations	61
		2.6.3	•	ic aberrations	61
			2.6.3.1	Example A: The principle of the positive	
				achromatic doublet	62
			2.6.3.2	Example B: Binary optics used for chromatic	
				aberration correction in the IR spectrum	63
	2.7	Genera	al Procedu	ure for Designing Optical Imaging Systems	64
		2.7.1	First-ord	er design of optical imaging systems	65
		2.7.2	Detailed	design of optical imaging systems	67
			2.7.2.1	Configuration optimization	67
			2.7.2.2	Tolerance analysis	68
		2.7.3	Design o	of an achromatic doublet	69
	Refe	rences			75
3	Wave	e Optics	6		77
	3.1 Electromagnetic Theory of Optics				
		3.1.1	Maxwell'	s equations	77
		3.1.2	Wave ed	quations	79
			3.1.2.1	Vector wave equation	79
			3.1.2.2	Scalar wave equation	80
				3.1.2.2.1 The Helmholtz equation	80

	3.1.3	Light wa	ves and their characteristics	81
		3.1.3.1	Plane waves	81
		3.1.3.2	Spherical waves	82
		3.1.3.3	Characteristics of light waves	83
3.2	Diffrac	tion		85
	3.2.1	Rayleigh	-Sommerfeld diffraction formula	86
	3.2.2		approximation	88
	3.2.3	Fraunhof	er approximation	92
	3.2.4	•		93
			Circular aperture	93
		3.2.4.2	Rectangular aperture	96
		3.2.4.3	Other aperture shapes	98
3.3	Interfe	rence		99
	3.3.1	Coheren		99
		3.3.1.1	Temporal coherence	103
		3.3.1.2	Spatial coherence	104
	3.3.2	Example		107
		3.3.2.1	Two-beam interference	107
			Multibeam interference	111
			Fourier transform spectrometer	113
			Stellar interferometer	115
3.4		-	An Introduction	116
		Fourier t		116
		-	spectrum expansion	117
	3.4.3		ransform in optics	122
		3.4.3.1	Phase transformation of a positive lens	122
		3.4.3.2		123
	3.4.4	-	s of optical Fourier spectra	125
			Point sources	125
			Plane waves	126
		3.4.4.3		128
			Circular apertures	130
		3.4.4.5		131
		3.4.4.6	Phase-contrast microscopes	132
	3.4.5		s governing image formation in Fourier optics	133
		3.4.5.1	Point spread functions	133
		3.4.5.2	Image formation with coherent illumination	134
		3.4.5.3	Image formation with incoherent illumination	135
3.5		ront Aberra		136
	3.5.1		bath difference	137
		3.5.1.1	Example: Light traveling in different media	
			of the same thickness	137

vii

vii	i			Contents
		3.5.2	Peak-to-valley and root-mean-square values of	
		0.0.2	a wavefront aberration	138
		3.5.3	Zernike representation of wavefront aberrations	140
	3.6		tion Limits of Optical Imaging Systems	142
	Refe	rences		143
11	COMF	ONENT	S AND CASE STUDIES	145
4	Gen	eral Opti	cal Components in Optical Systems	147
	4.1	Light S	ources	147
		4.1.1	Incoherent sources	148
		4.1.2	Coherent sources	149
	4.2	Lenses	i	151
		4.2.1	Spherical lenses	151
		4.2.2	-	152
		4.2.3	Cylindrical lenses	153
		4.2.4	Axicons	154
		4.2.5	Aspheric lenses	155
		4.2.6	Plane-parallel plates	157
		4.2.7	Optical wedges	158
	4.3	Mirrors	and prisms	158
		4.3.1	Mirrors	158
			4.3.1.1 Plane mirrors	159
			4.3.1.2 Curved mirrors	160
		4.3.2	Prisms	164
			4.3.2.1 Dispersing prisms	164
			4.3.2.2 Reflecting prisms	166
			4.3.2.3 Right-angle prism	168
			4.3.2.4 Dove prism	169
			4.3.2.5 Pentaprism	169
			4.3.2.6 Beam-splitting prisms	170
	4.4		ive Optical Elements	171
		4.4.1	Principle of a grating and diffraction order	172
			Grating equation	173
		4.4.3	Dispersion	175
		4.4.4	Resolution of a grating	175
		4.4.5	Free spectral range	176
		4.4.6	Blazing	177
	4.5	Optical		178
		4.5.1	Absorptive and interference filters	179
			4.5.1.1 Absorptive filters	179
			4.5.1.2 Interference filters	179
		4.5.2	Optical filters with different functions	180
			4.5.2.1 Longpass filters	180

				Shortpass filters	181
				Bandpass filters	181
	4.0	Ontinal	4.5.2.4	Neutral-density filters	182
	4.6	Optical		a and single made fibers	183
		4.6.1		e and single-mode fibers	184
		4.6.2		on in fibers	185
	47	4.6.3	•	n of fibers	185
	4.7	•	Detectors		186
		4.7.1	51	optical detectors	186
		4.7.2	Photon d	detectors	186 187
		4.7.3			
				Photoemissive detectors	187
				Photoconductive detectors	188
				Photovoltaic detectors	188
		474		Detector arrays	190
	Defe	4.7.4	Performa	nce characteristics	192 193
	Relei	rences			193
5	Case	Study '	1: Confoc	al Microscopes	195
	5.1	Fundar	nentals of	Standard Optical Microscopes	195
		5.1.1	Configura	ation and characteristics of the standard microscope	195
			5.1.1.1	Field	196
			5.1.1.2	Resolution	197
		5.1.2	Main ele	ments of standard optical microscopes	198
			5.1.2.1	5	198
			5.1.2.2	Objective	199
			5.1.2.3	Eyepiece	199
	5.2	Confoc	al Microso	copes	201
		5.2.1	Principles	s of confocal microscopes and their configurations	201
		5.2.2	Main cor	nponents of confocal microscopes	202
			5.2.2.1	0	202
			5.2.2.2	Objectives	203
			5.2.2.3	Pinholes	203
			5.2.2.4	Detectors	204
			5.2.2.5	Scanning systems	204
	5.3	Types	of Confoc	al Microscopes	205
		5.3.1	Nipkow-d	lisk scanning confocal microscopes	205
		5.3.2	Scanning	-slit confocal microscopes	207
	Refer	rences			208
6	Case	Study 2	2: Online	Cophasing Optical Systems for	
		nented I			209
	6.1	Principl	es of Dua	al-Wavelength Digital Holography for Phase	
		Measur			210

ix

x				(Contents
		6.1.1	Single-w	avelength digital holography for	
			phase m	neasurement	210
		6.1.2	Dual-way	velength digital holography for	
			phase m	neasurement	212
	6.2	Design	of the H	olographic Recorder: A Point Diffraction	
		Mach-2	Zehnder I	nterferometer	214
	6.3	Algorith	m for Nu	merical Processing of Interferograms	216
	6.4	Perforn	nance		218
		6.4.1	Online c	ophasing of S1 by dual-wavelength	
			digital ho	blography	218
		6.4.2	Online c	ophasing of S2 by dual-wavelength	
			digital ho	blography	220
	Refe	rences			224
7	Case	Study	3: Adapti	ve Optics Systems	227
	7.1	-	=	aptive Optics	227
		7.1.1		through atmospheric turbulence	229
			7.1.1.1	Structure function of the refractive index and	
				its power spectrum	229
			7.1.1.2	Phase structure function and its power spectrum	
			7.1.1.3	Image formation through atmospheric turbulence	233
				7.1.1.3.1 Long-exposure imaging	233
				7.1.1.3.2 Short-exposure imaging	234
		7.1.2	Wavefro	nt sensing	235
			7.1.2.1	Shack–Hartmann wavefront sensor	236
			7.1.2.2	Lateral shearing interferometer	238
			7.1.2.3	Curvature wavefront sensor	240
		7.1.3	Wavefro	nt correction	241
			7.1.3.1	Types of wavefront correctors	241
			7.1.3.2	Membrane deformable mirrors	243
			7.1.3.3	Piezoelectric deformable mirrors	244
			7.1.3.4	Technical parameters of the deformable mirror	245
		7.1.4	Control s	system	246
			7.1.4.1	Closed-loop control of an AO system	246
			7.1.4.2	Description of modal control	247
	7.2	Astrono	mical Te	lescopes and Atmospheric Seeing	248
		7.2.1	Astronor	nical telescopes	248
		7.2.2	Atmosph	ieric seeing	248
	7.3	Optical	Design c	of the AO System	249
		7.3.1	First-ord	er design of the AO system	249
		7.3.2	Detailed	design of the AO system	250
	7.4	Core C	omponen	ts of the AO System and Related Algorithms	251

		7.4.	1 Sha	ack–Ha	rtmann wavefront sensor	251
			7.4	.1.1	Technical parameters	251
			7.4	.1.2 \	Navefront reconstruction algorithm	251
		7.4.	2 Pie	zoelect	ric deformable mirrors	254
			7.4	.2.1	Technical parameters	254
			7.4	.2.2 I	nfluence function matrix	254
			7.4	.2.3 1	Modal control method	255
		7.4.	3 Pie	zoelect	ric tip/tilt mirror	256
	7.5	Ord	er Estir	nation i	n Modal Wavefront Reconstruction	257
	7.6	Mat	ching F	roblem	between the SH Sensor and the DM in an	
		AO	System	۱		258
	7.7	Imp	lementa	ation of	the AO System Controller	259
	7.8	Perf	ormanc	e of th	e AO System	260
	Refer	ence	S			261
Ap	pendi	ces				263
	Appe	ndix	A: Dira	c δ Fur	nction	263
	A	1	Definiti	on		263
	А	.2	Proper	ties		263
			A.2.1	Scalin	g property	263
			A.2.2		ig property	264
	A	.3	δ Func	tion as	a limit	264
	A	.4	A usef	ul form	ula	265
	Appe	ndix	B: Con	volutior	1	265
	В	.1	Definiti	on		265
	В	.2	Descrip	otion		265
	В	.3	Proper	ties		266
			B.3.1	Algeb	raic properties	266
			B.3.2	Convo	plution with the δ function	266
			B.3.3	Trans	lation invariance	266
	Appe	ndix	C: Cor	relation		266
	С	5.1	Definiti	on		266
	С	;.2	Descrip	otion		267
	С	:.3	Proper	ties		267
	Appe	ndix	D: Stat	istical (Correlation	267
	Appe	ndix	E: 2D	Fourier	Transform	268
		.1	Definiti	on		268
	E	.2	Descrip	otion		268
	E	.3	Proper	ties		269
			E.3.1		rity theorem	269
			E.3.2	Simila	rity theorem	269
			E.3.3	Shift t	heorem	269

xi

xii			Contents
	E.3.4	Parseval's theorem	270
	E.3.5	Convolution theorem	270
	E.3.6	Autocorrelation theorem	270
	E.3.7	Fourier integral theorem	271
Appendi	ix F: Pov	wer Spectrum	271
Appendi	ix G: Lin	lear Systems	272
G.1	Impuls	se response and superposition integral	272
G.2	Invaria	ant linear systems	273
Referen	ces		273
Index			275

Preface

Optical systems have such broad applications that they can be found in countless scientific disciplines, industry, and everyday life. Many scientists and engineers whose work involves optical systems can use commercial off-the-shelf systems or build an optical system from the level of optical components. However, scientists and engineers who need to build customized optical systems must be able to understand the working principles of these systems and the components they comprise. With this requirement in mind, the goal of this book is to guide readers in acquiring an understanding of how and why optical systems and their related optical components work. The prerequisite for understanding optical systems is for readers to understand the optical theories involved in the systems. Then, armed with this understanding of the theory, readers can learn to analyze and understand these systems by studying some practical optical systems. An understanding of optical theories together with an examination of some practical optical systems will boost the reader to a higher level of expertise in building optical systems.

Having worked in the field of optics for many years, we believe that a clear, global picture of optical theory is important for understanding optical systems, especially for conceiving new optical systems, which is our ultimate goal for readers. We also believe that the most effective and quickest way for readers to acquire the ability to analyze and understand optical systems is by studying examples of some typical optical systems. Based on the above tenets, this book consists of two parts: optical theory, involving mainly classical optics; and case studies of optical systems, involving mainly imaging systems. Three practical optical systems are provided to show readers how to analyze and understand the working principles of optical systems by means of optical theories. We expect readers to not only master the basic methods used in building the optical systems in the examples presented in the book, but also to be able to apply these methods in new situations and to conceive their own systems. This is where real understanding is demonstrated.

The book is divided into two parts. Part I on Theory (Chapters 1–3) gives an introduction to geometrical optics and wave optics, and some concepts of quantum optics and statistical optics. Chapter 1 presents an overview of the properties and generation of light, a brief summary of optical theories, and

some optical systems. Chapter 2 focuses on geometrical optics. Included in this chapter are the origin of the index of refraction, laws of reflection and refraction, perfect optical imaging systems, raytracing, geometrical aberrations, and design of an achromatic doublet. Chapter 3 presents descriptions of wave optics. Topics covered are Maxwell's equations, wave equations, light waves and their characteristics, diffraction, interference, Fourier optics, wavefront aberrations, and resolution limits of optical imaging systems. Part II on case studies (Chapters 4-7) describes some important and commonly used optical elements and presents three examples of practical optical systems. Commonly used optical components are introduced in Chapter 4. Chapter 5 covers confocal microscopes, whose principle can be explained mainly using geometrical optics. Chapter 6 describes an online cophasing optical system for segmented mirrors. The principle of the co-phasing optical system is expounded mainly by wave optics. Finally, in Chapter 7, a comprehensive example concerning an adaptive optics system designed and implemented by the adaptive optics group led by Sijiong Zhang is explained using both geometrical and wave optics.

The advanced mathematics needed for readers of this book are calculus, Fourier transforms, and matrix operations. The book can be used as a textbook or reference for students majoring in optics or physics. It can also serve as a reference for scientists, engineers, and researchers whose work involves optical systems.

We would like to express our sincere thanks to the numerous people who have contributed to this book. We are very grateful to many colleagues of Nanjing Institute of Astronomical Optics & Technology (NIAOT), Chinese Academy of Sciences, especially, the director of NIAOT, Prof. Yongtian Zhu, who supported us in writing this book. We thank Prof. Dong Xiao for closely reading the manuscript and giving many useful suggestions during the revision of the manuscript. We thank Dr. Yanting Lu for participating in the revision of the manuscript and writing its appendices. We also thank Dr. Bangming Li for writing part of Chapter 7. Additionally, we would like to express our sincere appreciation to SPIE, especially to Senior Editor Dara Burrows, and to the anonymous reviewers for their helpful and constructive suggestions to improve this book. Finally, the first author, Sijiong Zhang, would like to express his thanks to Prof. Alan Greenaway at Heriot-Watt University, Edinburgh for guiding him into the field of adaptive optics.

> Sijiong Zhang Changwei Li Shun Li July 2017