Open Access
Ebook Topic:
Back Matter
Author Affiliations +
Abstract
This section contains the bibliography, index, and author bios.

Bibliography

1 

Born M., Wolf E., Principles of Optics, Fifth EditionPergamon Press, Oxford, UK (1975). Google Scholar

2 

Bufton J. L., ““Comparison of vertical profile turbulence structure with stellar observations,”,” Appl. Opt., 12 1785 (1973). Google Scholar

3 

Churnside J. H., ““Aperture averaging of optical scintillations in the turbulent atmosphere,”,” Appl. Opt., 30 1982 (1991). Google Scholar

4 

Ellerbroek B. L., ““Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques,”,” J. Opt. Soc. Am. A, 19 1803–1816 (2002). Google Scholar

5 

Ellerbroek B. L., Gilles L., Vogel C. R., ““Computationally efficient wavefront reconstructor for simulation of multiconjugate adaptive optics on giant telescopes,”,” Proc. SPIE, 4839 989–1000 (2003). Google Scholar

6 

Forbes F. F., ““Bimorph PZT active mirror,”,” Proc. SPIE, 1114 146–151 1989). Google Scholar

7 

Franklin G. F., Powell J. D., Workman M. L., Digital Control of Dynamic Systems, Second EditionAddison-Wesley, Reading, MA (1990). Google Scholar

8 

Fried D. L., ““Focus anisoplanatism in the limit of infinitely many artificial-guide-star referrence spots,”,” J. Opt. Soc. Am. A, 12 939 1995). Google Scholar

9 

Fried D. L., ““Anisoplanatism in adaptive optics,”,” J. Opt. Soc. Am., 72 52 1982). Google Scholar

10 

Gardner C. S., Welsh B. M., Thompson L. A., ““Design and performance analysis of adaptive optical telescopes using laser guide stars,”,” Proc. IEEE, 78 1721–1743 1990). Google Scholar

11 

Gonzalez R. C., Woods R. E., Digital Image Processing, Second EditionPrentice Hall, Upper Saddle River, NJ (2002). Google Scholar

12 

Goodman J. W., Introduction to Fourier Optics, Second EditionMcGraw-Hill, New York (1996). Google Scholar

13 

Goodman J. W., Statistical Optics, John Wiley and Sons, New York (1985). Google Scholar

14 

Greenwood D. P., ““Bandwidth specification for adaptive optics systems,”,” J. Opt. Soc. Am., 67 390 (1977). Google Scholar

15 

Grosso R. P., Yellin M., ““The membrane mirror as an adaptive optical element,”,” J. Opt. Soc. Am., 67 399 (1977). Google Scholar

16 

Hardy J. W., Adaptive Optics for Astronomical Telescopes, Oxford Univ. Press, Oxford, UK (1998). Google Scholar

17 

Hayes M. H., Statistical Digital Signal Processing and Modeling, John Wiley and Sons, New York (1996). Google Scholar

18 

Hudgin R. H., ““Wave-front compensation error due to finite corrector-element size,”,” J. Opt. Soc. Am., 67 393 (1977). Google Scholar

19 

Hyver G. A., Blankinship R. M., ““ALI high-power beam control,”,” Advances in the Astronautical Sciences, 88 445–469 (1995). Google Scholar

20 

““Lasers and laser related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios,”,” International Organization for Standardization, Geneva, Switzerland (2005). Google Scholar

21 

Johnson B., Murphy D. V., Thermal Blooming Laboratory Experiment, Lincoln Laboratory MIT Project Report BCP-2(November1988). Google Scholar

22 

Kalman R. E., ““A new approach to linear filtering and prediction problems,”,” Transaction of the ASME—Journal of Basic Engineering, 82 (D), 35–45 (1960). Google Scholar

23 

Lee L. H., ““Loopshaped wavefront control using open-loop reconstructors,”,” Optics Express, 14 (17), 7477–7486 (2006). Google Scholar

24 

Miller M. G., Zieske P. L., ““Turbulence environment characterization,”,” RADC-79-131, ADA072379, Rome Air Development Center, U.S. Air Force, Rome, NY (1979). Google Scholar

25 

Noll R. J., ““Zernike polynomials and atmospheric turbulence,”,” J. Opt. Soc. Am., 66 207 (1976). Google Scholar

26 

Oppenheim A. V., Schafer R. W., Buck J. R., Discrete-Time Signal Processing, Second EditionPrentice Hall, Upper Saddle River, NJ (1999). Google Scholar

27 

O’Neil P. V., Advanced Engineering Mathematics, Sixth EditionNelson, Toronto, Canada (2007). Google Scholar

28 

““Application Note No. 2, Silicon Photodiode Physics and Technology,”,” OSI Optoelectronics(1982). Google Scholar

29 

““Application Note No. 8, Lateral Effect Photodiodes,”,” OSI Optoelectronics(1982). Google Scholar

30 

Perram G. P., Cusumano S. J., Hengehold R. L., Fiorino S. T., An Introduction to Laser Weapon Systems, Directed Energy Professional Society, Albuquerque, NM (2010). Google Scholar

31 

Poyneer L. A, Gavel D. T., Brase J. M., ““Fast wavefront reconstruction in large adaptive optics system with use of the Fourier transform,”,” J. Opt. Soc. Am. A, 19 (10), 2100–2111 (2002). Google Scholar

32 

Poyneer L. A., Macintosh B., ““Spatially filtered wavefront sensor for high order adaptive optics,”,” J. Opt. Soc. Am. A, 21 (5), 810–819 (2004). Google Scholar

33 

Roddier F., ““Curvature sensing and compensation: a new concept in adaptive optics,”,” Appl. Opt., 27 1223 (1988). Google Scholar

34 

Simon D, Optimal State Estimation, Kalman, H-∞, and Nonlinear Approaches, John Wiley and Sons, Hoboken, NJ (2006). Google Scholar

35 

Sinha N. K., Kuszta B., Modeling and Identification of Dynamic Systems, Van Nostrand Reinhold, New York (1983). Google Scholar

36 

Skogestad S., Postlethwaite I., Multivariable Feedback Control, Analysis and Design, John Wiley and Sons, Hoboken, NJ (2009). Google Scholar

37 

Taranenko V. G., Koshelev G. P., Romanyuk N. S., ““Local deformations of solid mirrors and their frequency dependence,”,” Sov. J. Opt. Technol., 48 650 (1981). Google Scholar

38 

Trefethen L. N., Bau D., Numerical Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia (1997). Google Scholar

39 

Tyler G., ““Reconstruction and assessment of the least-squares and slope discrepancy components of the phase,”,” J. Opt. Soc. Am. A, 17 1828–1839 (2000). Google Scholar

40 

Tyson R. K., Introduction to Adaptive Optics, SPIE Press, Bellingham, WA (2000). Google Scholar

41 

Tyson R. K., Principles of Adaptive Optics, Third EditionCRC Press, Boca Raton, FL (2011). Google Scholar

42 

Tyson R. K., ““Adaptive optics and ground-to-space laser communications,”,” Appl. Opt., 35 3640–3646 (1996). Google Scholar

43 

Uchino K., Ferroelectric Devices, CRC Press, Boca Raton, FL (2000). Google Scholar

44 

Ulrich P. B., ““Hufnagel-Valley profiles for specified values of the coherence length and isoplanatic patch angle,”,” W. J. Schafer Associates, WJSA/MA/TN-88-013, Arlington, VA (1988). Google Scholar

45 

Vogel C. R., Computational Methods for Inverse Problems, Society for Industrial and Applied Mathematics, Philadelphia (2002). Google Scholar

46 

Vogel C. R., Yang Q., ““Fast optimal wavefront reconstruction for multi-conjugate adaptive optics using the Fourier domain preconditioned conjugate gradient algorithm,”,” Optics Express, 14 (17), 7487–7498 (2006). Google Scholar

gr8-1.jpg Robert K. Tyson is an Associate Professor of Physics and Optical Science at The University of North Carolina at Charlotte. He has a B.S. in physics from Penn State University and M.S. and Ph.D. degrees in physics from West Virginia University. He was a senior systems engineer with United Technologies Optical Systems from 1978 to 1987 and a senior scientist with Schafer Corporation until 1999. He is the author of Principles of Adaptive Optics [Academic Press (1991), Second Edition (1998), Third Edition, CRC Press (2011)], Lighter Side of Adaptive Optics, SPIE Press (2009), and Introduction to Adaptive Optics, SPIE Press (2000) and the editor of ten volumes on adaptive optics. He is also a Fellow of SPIE. Professor Tyson’s current research interests include atmospheric turbulence studies, classical diffraction, novel wavefront sensing, and amplitude and phase manipulation techniques to enhance propagation, laser communications, and imaging.

gr8-2.jpg Benjamin W. Frazier is a Principal Electro-Optical Engineer with AOA Xinetics, a small business unit of Northrop Grumman Aerospace Systems. He has B.S.E.E. and M.S.E.E. degrees from the University of North Carolina at Charlotte, where he focused on control theory for adaptive optics systems. Frazier has extensive experience with systems integration and testing of beam control systems and components, particularly deformable mirrors and wavefront control systems for high-power and solid state lasers. He currently supports multiple programs in systems engineering, integration and test, data analysis, and performance assessment.

Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Adaptive optics

Actuators

Wavefronts

Americium

System on a chip

Neodymium

Wavefront sensors

Back to Top