Translator Disclaimer
Ebook Topic:
Back Matter
Abstract
This section contains the bibliography, index, and author biography.

Bibliography

1 

Allebach J. P., ““Representation related errors in binary digital holograms: a unified analysis,”,” Appl. Opt., 20 (2), 290–299 (1981). Google Scholar

2 

Andersson H. , ““Single photomask multilevel kinoforms in quartz and photoresist: manufacture and evaluation,”,” Appl. Opt., 29 (28), 4259–4267 (1990). Google Scholar

3 

Behrmann G. P., ““Color correction in athermalized hybrid lenses,”,” OSA Tech. Digest, 9 67–70 (1993). Google Scholar

4 

Bernacki B. E., ““Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond turned molds,”,” Proc. SPIE, 2536 463–474 (1995). Google Scholar

5 

Biehl S., Danzebrink R., Oliveira P., Aegerter M. A., ““Refractive microlens fabrication by ink-jet process,”,” J. Sol-Gel Sci. Technol., 13 (1/3), 177–182 (1998). Google Scholar

6 

Born M., Wolf E., Principles of Optics, 6th Ed.Pergamon Press, London (1980). Google Scholar

7 

Braat J., ““Effects of lens distortion in optical step-and-scan lithography,”,” Appl. Opt., 35 (4), 690–700 (1996). Google Scholar

8 

Brown B. R., Lohmann A. W., ““Computer-generated Binary Holograms,”,” IBM J. Res. Dev., 13 160–168 (1969). Google Scholar

9 

Brenner K.-H. , ““Application of three-dimensional micro-optical components formed by lithography, electroforming and plastic molding,”,” Appl. Opt, 32 (32), 6464–6469 (1993). Google Scholar

10 

Brunner T., ““Impact of lens aberrations on optical lithography,”,” IBM J. Res. Develop., 41 (1), 57–67 (1997). Google Scholar

11 

Chou S. Y., Krauss P. R., Zhang W., ““Sub-10 nm imprint lithography and applications,”,” J. Vac. Sci. Tech. B., 15 (6), 2897–2904 (1997). Google Scholar

12 

Clarck P., ““Ray-tracing models for Diffractive Optical Elements,”,” OSA Tech. Digest, 8 2–3 (1993). Google Scholar

13 

Cobb N., Zakhor A., ““Fast sparse aerial-image calculation for OPC,”,”534–545 (1995). Google Scholar

14 

Commander L. G., Day S. E., Selviah D. R., ““Variable focal length microlenses,”,” Opt. Comm., 177 1157–6170 (2000). Google Scholar

15 

Cox J. A., Fritz B. S., Werner T. R., ““Process-dependant kinoform performances,”,”100–109 (1991). Google Scholar

16 

Da X.-Y., ““Talbot effect and the array illuminators that are based on it,”,” Appl. Opt., 31 (16), 2983–2986 (1992). Google Scholar

17 

Däschner W., Long P., Stein R., Wu C., Lee S., ““One step lithography for mass production of multilevel diffractive optical elements using high energy beam sensitive (HEBS) grey-level masks,”,”153–155 (1996). Google Scholar

18 

Däschner W., Long P., Stein R., Wu C., Lee S., ““General aspheric refractive Micro Optics fabricated by optical lithography using a high energy beam sensitive (HEBS) glass grey level mask,”,” Vac. Sci. Technol. B, 14 3730–3733 (1996). Google Scholar

19 

Daly D., Microlens Arrays, Taylor & Francis, London (2001). Google Scholar

20 

Daly D., Stevens R. F., Hutley M. C., Davies N., ““The manufacture of microlenses by melting photoresist,”,” Meas. Sci. Technol., 1 (8), 759–766 (1990). Google Scholar

21 

Dammann H., ““Blazed synthetic phase-only holograms,”,” Optik, 31 95–104 (1970). Google Scholar

22 

Dammann H., Görtler K., ““High-efficiency in-line multiple imaging by means of multiple phase holograms,”,” Opt. Commun., 3 312–315 (1971). Google Scholar

23 

Dannberg P., ““Wafer scale integration of micro-optic and optoelectronic elements by polymer UV reaction moulding,”,”244–251 (1999). Google Scholar

24 

d'Auria L., Huignard J.-P., Roy A. M., ““Photolithographic fabrication of thin film lenses,”,” Opt. Commun., 5 (4), 232–235 (1972). Google Scholar

25 

Domash L. H., ““Switchable-focus lenses in holographic polymer-dispersed liquid crystal,”,”188–194 (1995). Google Scholar

26 

Duparré M., ““Investigations of computer-generated diffractive beam shapers for flattening of single-modal CO2 laser beams,”,” Appl. Opt., 34 (14), 2489–2497 (1995). Google Scholar

27 

Eschbach R., ““Comparison of error diffusion methods for computer generated holograms,”,” Appl. Optics, 30 (26), 3702–3710 (1991). Google Scholar

28 

Fally M., Ellabban M., Drevensek-Olenik I., ““Out-of-phase mixed holographic gratings: a quantitative analysis,”,” Opt. Express, 16 (9), 6528–6536 (2008). Google Scholar

29 

Farn M. W., ““Design and Fabrication of Binary Diffractive Optics,”,” (1990). Google Scholar

30 

Farn M. W., ““Effects of VLSI fabrication errors on kinoform efficiency,”,”125–136 (1991). Google Scholar

31 

Farn M. W., Goodman J. W., ““Diffractive doublets corrected at two wavelengths,”,” J. Opt. Soc. Am. A, 8 (6), 860 (1991). Google Scholar

32 

Fienup J. R., ““Iterative method applied to image reconstruction and to computer generated holograms,”,” Opt. Eng., 19 (3), 297–305 (1980). Google Scholar

33 

Fujita T., Nishihara H. , Koyama J. , ““Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,”,” Opt. Lett., 7 (12), 578–580 (1982). Google Scholar

34 

Gabor D., ““A new microscopic principle,”,” Nature, 161 (4098), 777–778 (1948). Google Scholar

35 

Gale M. T., ““Continuous relief diffractive optical elements for two-dimensional array generations,”,” Appl. Opt., 32 (14), 2526–2533 (1993). Google Scholar

36 

Gale M. T., ““Fabrication of micro-optical elements by laser beam writing in photoresist,”,”65–70 (1991). Google Scholar

37 

Gale M. T., Rossi M. , Pedersen J., Schütz H. , ““Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,”,” Opt. Eng., 33 3556–3566 (1994). Google Scholar

38 

Gaylor T. K., Moharam M. G., ““Thin and thick gratings: terminology clarification,”,” Appl. Opt., 20 (19), 3271–3273 (1981). Google Scholar

39 

Gerchberg R. W., Saxton W. O., ““A practical algorithm for the determination of phase from image and diffraction plane pictures,”,” Optik, 35 (2), 237–246 (1972). Google Scholar

40 

Goel M., Naylor D. L., ““Analysis of design strategies for Dammann gratings,”,”35–45 (1996). Google Scholar

41 

Goodman J. W., Introduction to Fourier Optics, McGraw Hill, New York (1968). Google Scholar

42 

Gruhlke R., ““Diffractive optics for industrial lasers: Effects of fabrication error,”,”118–127 (1992). Google Scholar

43 

Haggans C. W., ““Effective-medium theory of zeroth-order lamellar gratings in conical mounting,”,” J. Opt. Soc. Am. A, 10 (10), 2217–2225 (1993). Google Scholar

44 

Hariharan P., Optical Holography, Cambridge University Press, Cambridge (1984). Google Scholar

45 

Herzig H.-P. , Micro-Optics: Elements, Systems and Applications, Taylor and Francis, London (1997). Google Scholar

46 

Hutley M. C., Diffraction Gratings, Academic Press, London (1982). Google Scholar

47 

Iga K., Kokubun Y. , Oikawa M., Fundamentals of Micro-Optics, Academic Press, New York (1984). Google Scholar

48 

Jahns J., ““Two-dimensional array of diffractive microlenses fabricated by thin film deposition,”,” Appl. Opt., 29 (7), 931–936 (1990). Google Scholar

49 

Jay T. R., Stern M. B., Knowlden R. E., ““Effect of refractive microlens array fabrication parameters on optical quality,”,”236–245 (1992). Google Scholar

50 

Jennisson B. K., ““Analysis of the leakage from computer-generated holograms synthetized by direct binary search,”,” J. Opt. Soc. Am. A, 6 (2), 234–243 (1989). Google Scholar

51 

Kathman A., ““Phase grating optimization using genetic algorithms,”,” OSA Tech. Digest, 9 71–73 (1993). Google Scholar

52 

Kley E.-B. , Fuchs H.-J. , Kilian A. , ““Fabrication of glass lenses by melting technology,”,”85–92 (2001). Google Scholar

53 

Kley E.-B., Thomas F., Zeitner U. D., Witti L. , Aagedal H. , ““Fabrication of micro optical surface profiles by using grayscale masks,”,”254–262 (1997). Google Scholar

54 

Kogelnik H., ““Coupled-wave theory for thick hologram gratings,”,” Bell Syst. Tech. J., 48 (9), 2909–2947 (1969). Google Scholar

55 

Kohler U., ““Fabrication of microlenses by combining silicon technology, mechanical micromachining and plastic molding,”,”18–22 (1996). Google Scholar

56 

Kostuk R. K., ““Hybrid diffractive elements for planar optics,”,” OSA Tech. Digest, 9 38–41 (1993). Google Scholar

57 

Kulishov M., ““Nonreciprocal waveguide Bragg gratings,”,” Opt. Express, 13 (8), 3068–3078 (2005). Google Scholar

58 

Laurence G. N., ““Using rules of thumb in the design of physical optics systems,”,” OSA Tech. Digest, 9 12–13 (1993). Google Scholar

59 

Layet B., Cormack I. G., Taghizadeh M. R., ““Stripe color separation with diffractive optics,”,” Appl. Opt., 38 7193–7201 (1999). Google Scholar

60 

Lee W.-H. , ““Method for converting a Gaussian laser beam into a uniform beam,”,” Opt. Commun., 36 (6), 469–471 (1981). Google Scholar

61 

Leseberg D., ““Computer-generated holograms: cylindrical, conical and helical waves,”,” Appl. Opt., 26 (20), 4385–4390 (1987). Google Scholar

62 

Lesem B., Hirsch P. M., Jordan J. , ““The kinoform: a new wavefront reconstruction device,”,” IBM J. Res. Dev., 13 150–155 (1969). Google Scholar

63 

Levenson M. D., ““The phase-shifting mask II: imaging simulations and submicrometer resist exposures,”,” IEEE Trans. Electron Devices, 31 (6), 753–763 (1984). Google Scholar

64 

Lin B. J., ““Where is the lost resolution?”,”44–40 (1986). Google Scholar

65 

Lohman A. W., Paris D. P., ““Binary Fraunhofer holograms generated by computer,”,” Appl. Opt., 6 1739–1748 (1967). Google Scholar

66 

Londoño C. W., Plummer W. T., Clark P. P., ““Athermalization of a single-component lens with diffractive optics,”,” Appl. Opt., 32 (13), 2295–2302 (1993). Google Scholar

67 

Londoño C. W., ““Hybrid diffractive/refractive lenses and achromats,”,” Appl. Opt., 27 (14), 2960–2971 (1988). Google Scholar

68 

Luo C. Y., Johnson S, G, , Joannopoulos J. D., Pendry J. B., ““Sub-wavelength imaging in photonic crystals,”,” Phys. Rev. B, 68 045115 (2003). Google Scholar

69 

Mahlab U., ““Genetic algorithm for optical pattern recognition”,” Opt. Lett., 16 (9), 648–650 (1991). Google Scholar

70 

Marchand E. W., Wolf E., ““Boundary diffraction wave in the domain of the Rayleigh–Kirchhoff diffraction theory,”,” J. Opt. Soc. Am., 52 (7), 761–767 (1962). Google Scholar

71 

Masuda S., Nose T., Sato S., ““Optical properties of a polymer-stabilized liquid crystal microlens,”,” Japan J. Appl. Phys., 37 L1251–L1253 (1998). Google Scholar

72 

Miller J. M., ““Multilevel-grating array generators: fabrication error analysis and experiments,”,” Appl. Opt., 32 (14), 2519–2525 (1993). Google Scholar

73 

Miller S. E., ““Integrated optics: an introduction,”,” Bell Sys. Tech. J., 48 2059–2068 (1969). Google Scholar

74 

Miyamoto K., ““The phase Fresnel lens,”,” J. Opt. Soc. Am., 17 17–21 (1961). Google Scholar

75 

Moharam M. G., Gaylord T. K., ““Rigorous coupled-wave analysis of planar grating diffraction,”,” J. Opt. Soc. Am., 71 (7), Google Scholar

76 

Moore D. T., Selected Papers on Gradient-Index Optics, SPIE Press, Bellingham, WA (1993). Google Scholar

77 

Motamedi M. E., Southwell W. H., Gunning W. J., ““Antireflection surfaces in silicon using binary optic technology,”,” Appl. Opt., 31 (22), 4371–4376 (1992). Google Scholar

78 

Motamedi M. E., ““Micro-optic integration with focal plane arrays,”,” Opt. Eng., 36 (5), 1374–1381 (1997). Google Scholar

79 

Neipp C., Pascual I., Belendez A., ““Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms,”,” Opt. Express, 10 (23), 1374–1383 (2002). Google Scholar

80 

Nelson A. R. et al., ““Computer-generated electrically switchable holographic composites,”,”132–143 (1995). Google Scholar

81 

Noponen E., ““Complex amplitude modulation by high-carrier-frequency diffractive elements,”,” J. Opt. Soc. Am. A, 13 (7), 1422–1428 (1996). Google Scholar

82 

O'Shea D., ““Gray scale masks for diffractive optics fabrication: II. Spatially filtered halftone screens,”,” Appl. Opt., 34 (32), 7518–6526 (1995). Google Scholar

83 

Petit R. et al., Electromagnetic Theory of Gratings, Springer-Verlag, Berlin (1980). Google Scholar

84 

Rallison R. D., Cindrich I., Lee S. H., ““Wavelength compensation by time-reverse ray tracing,”,” Diffractive and Holographic Optics Technology II, 217–226 (1995). Google Scholar

85 

Ricks D. W., Lee S., ““Scattering from diffractive optics,”,” Diffractive and Miniaturized Optics, 187–1211 SPIE Press, Bellingham, WA (1993). Google Scholar

86 

Schurig D. et al., ““Metamaterial electromagnetic cloak at microwave frequencies,”,” Science, 314 (5801), 977–980 (2006). Google Scholar

87 

Shvartsman F. P., ““Holographic optical elements by dry photopolymer embossing,”,”313–320 (1991). Google Scholar

88 

Shvartsman F. P., ““SURPHEXTM: new dry photopolymers for replication of surface relief diffractive optics,”,”121–130 (1993). Google Scholar

89 

Singer W., ““Gradient index microlenses: numerical investigations of different spherical index profiles with the wave propagation method,”,” Appl. Opt., 34 (13), 2165–2171 (1995). Google Scholar

90 

Sinzinger S., ““Transition between diffractive and refractive micro-optical components,”,” Appl. Opt., 34 (26), 5970–5976 (1995). Google Scholar

91 

Sinzinger S., Jahns J., Microoptics, VCH, Weinheim, Germany (1999). Google Scholar

92 

Smith D. R., Pendry J. B., Wiltshire C. K., ““Metamaterials and negative refractive index,”,” Science, 305 (5685), 788–792 (2004). Google Scholar

93 

Somekh S., ““Introduction to ion and plasma etching,”,” J. Vac. Sci. Technol., 13 (5), 1003–1007 (1976). Google Scholar

94 

Southwell W. H., ““Ray-tracing kinoform lens surfaces,”,” Appl. Opt., 31 (13), 2244–2247 (1992). Google Scholar

95 

Spencer G. H., Murty M. V. R. K., ““General ray-tracing procedure,”,” J. Opt. Soc. Am., 52 (6), 650 (1951). Google Scholar

96 

Stern M. B., ““Fabricating binary optics: Process variables critical to optical efficiency,”,” J. Vac. Sci. Technol. B, 9 3117–3121 (1991). Google Scholar

97 

Suleski T. J., ““Gray scale masks for diffractive optics fabrication: I. Commercial slide imagers,”,” Appl. Opt., 34 (32), 7507–7517 (1995). Google Scholar

98 

Suleski T. J., Baggett B., Delaney W. F., ““Fabrication of high spatial frequency gratings through computer generated near-field holography,”,” Opt. Lett., 24 (9), 602–604 (1999). Google Scholar

99 

Suleski T. J., TeKolste R. D., ““Roadmap for micro-optics fabrication,”,”1–15 (2001). Google Scholar

100 

Swanson G. J., Binary Optics Technology: The theory and design of multi-level diffractive optical elements MA (1989). Google Scholar

101 

Swanson G. J., Veldkamp W. B., ““Diffractive optical elements for use in infrared systems,”,” Opt Eng., 28 605–608 (1989). Google Scholar

102 

Sweatt W. C. et al., ““Mass-producible microholographic tags,”,”170–175 (1995). Google Scholar

103 

Sweatt W. C., ““Mathematical equivalence between a holographic optical element and an ultra-high index lens,”,” J. Opt. Soc. Am. A, 69 486–487 (1979). Google Scholar

104 

Tanigami M., ““Low-wavefront aberration and high temperature stability molded micro-Fresnel lenses,”,” IEEE Photon. Technol. Lett., 1 (11), 384–385 (1989). Google Scholar

105 

TeKolste R. D., Welch W. H., Feldman M. R., ““Injection molding for diffractive optics,”,”129–131 (1995). Google Scholar

106 

Turunen J., Wyrowsky F., Diffractive Optics for Industrial and Commercial Applications, Akademie Verlag, Berlin (1997). Google Scholar

107 

Unger H.-G., Planar Optical Waveguides and Fibers, Clarendon Press, Oxford (1977). Google Scholar

108 

Urquhart K. S., Stein R., Lee S. H., ““Computer-generated holograms fabricated by direct write of positive electron-beam resist,”,” Opt. Lett., 18 (4), 308–310 (1993). Google Scholar

109 

Vasnetsov M. V., ““Oscillations conditions in a gain grating in the Bragg diffraction regime,”,” Opt. Commun., 282 (10), 2028–2031 (2009). Google Scholar

110 

Veldkamp W. B., ““Binary Optics: the Optics Technology of the Decade,”,” 37th Int. Symp. Electron, Ion and Photon Beams, San Diego, CA (1993). Google Scholar

111 

Weldkamp W. B., McHugh T. J., Binary Optics, Scientific American, 5 50–55 (1992). Google Scholar

112 

Wilson E. A., Miller D. T., Bernard K. J., ““Fill factor improvement using microlens arrays,”,”123–133 (1998). Google Scholar

113 

Wong A., Optical Imaging in Projection Microlithography, SPIE Press, Bellingham, WA (2005). Google Scholar

114 

Wyrowski F., ““Design theory of diffractive elements in the paraxial domain,”,” J. Opt. Soc. Am. A, 10 (7), 1553–1561 (1993). Google Scholar

115 

Wyrowski F., ““Digital phase holograms: coding and quantization with an error diffusion concept,”,” Opt. Commun., 72 (2), 37–41 (1989). Google Scholar

116 

Wyrowski F., ““Iterative quantization of digital amplitude holograms,”,” Appl. Opt., 28 (18), 3864–3870 (1989). Google Scholar

117 

Yablonovitch E., ““Inhibited spontaneous emission in solid-state physics and electronics,”,” Phys. Rev. Lett., 58 (20), 2059–2062 (1987). Google Scholar

118 

Yablonovitch E., ““Photonic band-gap structures,”,” J. Opt. Soc., Am. B, 10 283–295 (1993). Google Scholar

119 

Yang G., ““Iterative optimization approach for the design of diffractive phase elements simultaneously implementing several optical functions,”,” J. Opt. Soc. Am. A, 11 (5), 1632–1640 (1994). Google Scholar

120 

Yu N., Capasso F., ““Flat optics with designer metasurfaces,”,” Nature Mater., 13 (2), 139–150 (2014). Google Scholar

121 

Zappe H., ““Novel components for tunable micro-optics,”,” Optoelectronics Lett., 4 (2), 86–88 (2008). Google Scholar

122 

Zolla F., Guennea S., Nicolet A., Pendry J. B., ““Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,”,” Opt. Lett., 32 (9), 1069–1071 (2007). Google Scholar

The author with a Google Glass headsetbio1.jpg

For over 20 years, Bernard Kress has made significant scientific contributions as a researcher, professor, consultant, advisor, instructor, and author, making major contributions to digital micro-optical systems for consumer electronics, generating IP, and teaching and transferring technological solutions to industry. Many of the world’s largest producers of optics and photonics products have consulted with him on a wide range of applications, including laser-material processing, optical security, optical telecom/datacom, optical data storage, optical computing, optical motion sensors, optical gesture sensing, depth mapping, heads-up displays, head-mounted displays, virtual-reality headsets and smart glasses, pico-projectors, micro-displays, digital imaging processing, and biotechnology sensors.

Kress has more than 30 international patents. He has published four books, a book chapter, 102 refereed publications and proceedings, and numerous technical publications. He has also been involved in European research in micro-optics, including the Eureka Flat Optical Technology and Applications (FOTA) project and the Network for Excellence in Micro-Optics (NEMO) project. He is currently the Optics Lead of the Advanced Prototypes Lab at Google[X] Labs in Mountain View, California.

TOPIC
17 PAGES

SHARE
Advertisement
Advertisement
Back to Top