Access to eBooks is limited to institutions that have purchased or currently subscribe to the SPIE eBooks program. eBooks are not available via an individual subscription. SPIE books (print and digital) may be purchased individually on SPIE.Org.

Contact your librarian to recommend SPIE eBooks for your organization.
Ebook Topic:
Back Matter
Abstract
This section contains the bibliography, index, and author biography.

Bibliography

1 

J. P. Allebach, “Representation related errors in binary digital holograms: a unified analysis,” Appl. Opt. 20(2), 290–299, (1981).Google Scholar

2 

H. Andersson et al., “Single photomask multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 29(28), 4259–4267 (1990).Google Scholar

3 

G. P. Behrmann et al., “Color correction in athermalized hybrid lenses,” OSA Tech. Digest 9, 67–70 (1993).Google Scholar

4 

B. E. Bernacki et al., “Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond turned molds,” Proc. SPIE 2536, 463–474 (1995) [doi: 10.1117/12.218453].Google Scholar

5 

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).Google Scholar

6 

M. Born and E. Wolf, Principles of Optics, 6th Ed., Pergamon Press, London (1980).Google Scholar

7 

J. Braat, “Effects of lens distortion in optical step-and-scan lithography,” Appl. Opt. 35(4), 690–700 (1996).Google Scholar

8 

B. R. Brown and A. W. Lohmann, “Computer-generated Binary Holograms,” IBM J. Res. Dev. 13, 160–168 (1969).Google Scholar

9 

K.-H. Brenner et al., “Application of three-dimensional micro-optical components formed by lithography, electroforming and plastic molding,” Appl. Opt. 32(32), 6464–6469 (1993).Google Scholar

10 

T. Brunner, “Impact of lens aberrations on optical lithography,” IBM J. Res. Develop. 41(1), 57–67 (1997).Google Scholar

11 

S. Y. Chou, P. R. Krauss and W. Zhang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Tech. B. 15(6), 2897–2904 (1997).Google Scholar

12 

P. Clarck, “Ray-tracing models for Diffractive Optical Elements,” OSA Tech. Digest 8, 2–3 (1993).Google Scholar

13 

N. Cobb and A. Zakhor, “Fast sparse aerial-image calculation for OPC,” Proc. SPIE 2621, 534–545 (1995) [doi: 10.1117/12.228208].Google Scholar

14 

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Comm. 177(1–6), 157–170 (2000).Google Scholar

15 

J. A. Cox, B. S. Fritz, and T. R. Werner, “Process-dependant kinoform performances,” Proc. SPIE 1507, 100–109 (1991) [doi: 10.1117/12.47032].Google Scholar

16 

X.-Y. Da, “Talbot effect and the array illuminators that are based on it,” Appl. Opt. 31(16), 2983–2986 (1992).Google Scholar

17 

W. Däschner, P. Long, R. Stein, C. Wu, and S. Lee, “One step lithography for mass production of multilevel diffractive optical elements using high energy beam sensitive (HEBS) grey-level masks,” Proc. SPIE 2689, 153–155 (1996) [doi: 10.1117/12.239618].Google Scholar

18 

W. Däschner, P. Long, R. Stein, C. Wu and S. Lee, “General aspheric refractive Micro Optics fabricated by optical lithography using a high energy beam sensitive (HEBS) glass grey level mask,” Vac. Sci. Technol. B 14, 3730–3733 (1996).Google Scholar

19 

D. Daly, Microlens Arrays, Taylor & Francis, London (2001).Google Scholar

20 

D. Daly, R. F. Stevens, M. C. Hutley and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).Google Scholar

21 

H. Dammann, “Blazed synthetic phase-only holograms,” Optik 31, 95–104 (1970).Google Scholar

22 

H. Dammann and K. Görtler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).Google Scholar

23 

P. Dannberg et al., “Wafer scale integration of micro-optic and optoelectronic elements by polymer UV reaction moulding,” Proc. SPIE 3631, 244–251 (1999) [doi: 10.1117/12.348319].Google Scholar

24 

L. d'Auria, J.-P. Huignard and A. M. Roy, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5(4), 232–235 (1972).Google Scholar

25 

L. H. Domash et al., “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1995) [doi: 10.1117/12.239623].Google Scholar

26 

M. Duparré, “Investigations of computer-generated diffractive beam shapers for flattening of single-modal CO2 laser beams,” Appl. Opt. 34(14), 2489–2497 (1995).Google Scholar

27 

R. Eschbach, “Comparison of error diffusion methods for computer generated holograms,” Appl. Optics 30(26), 3702–3710 (1991).Google Scholar

28 

M. Fally, M. Ellabban and I. Drevensek-Olenik, “Out-of-phase mixed holographic gratings: a quantitative analysis,” Opt. Express 16(9), 6528–6536 (2008).Google Scholar

29 

M. W. Farn, “Design and Fabrication of Binary Diffractive Optics,” Doctoral thesis, Stanford University, Stanford, CA (1990).Google Scholar

30 

M. W. Farn, “Effects of VLSI fabrication errors on kinoform efficiency,” Proc. SPIE 1211, 125–136 (1991) [doi: 10.1117/12.17929].Google Scholar

31 

M. W. Farn and J. W. Goodman, “Diffractive doublets corrected at two wavelengths,” J. Opt. Soc. Am. A 8(6), 860 (1991).Google Scholar

32 

J. R. Fienup, “Iterative method applied to image reconstruction and to computer generated holograms,” Opt. Eng. 19(3), 297–305, (1980) [doi: 10.1117/12.7972513].Google Scholar

33 

T. Fujita, H. Nishihara and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7(12), 578–580 (1982).Google Scholar

34 

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).Google Scholar

35 

M. T. Gale, “Continuous relief diffractive optical elements for two-dimensional array generations,” Appl. Opt. 32(14), 2526–2533 (1993).Google Scholar

36 

M. T. Gale et al., “Fabrication of micro-optical elements by laser beam writing in photoresist,” Proc. SPIE 1506, 65–70 (1991) [doi: 10.1117/12.45959].Google Scholar

37 

M. T. Gale, M. Rossi, J. Pedersen and H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994) [doi: 10.1117/12.179892].Google Scholar

38 

T. K. Gaylor and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981).Google Scholar

39 

R. W. Gerchberg and W. O. Saxton: “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972).Google Scholar

40 

M. Goel and D. L. Naylor, “Analysis of design strategies for Dammann gratings,” Proc. SPIE 2689, 35–45 (1996) [doi: 10.1117/12.239636].Google Scholar

41 

J. W. Goodman, Introduction to Fourier Optics, McGraw Hill, New York (1968).Google Scholar

42 

R. Gruhlke, “Diffractive optics for industrial lasers: Effects of fabrication error,” Proc. SPIE 1751, 118–127, (1992) [doi: 10.1117/12.138873].Google Scholar

43 

C. W. Haggans et al., “Effective-medium theory of zeroth-order lamellar gratings in conical mounting,” J. Opt. Soc. Am. A 10(10), 2217–2225 (1993).Google Scholar

44 

P. Hariharan, Optical Holography, Cambridge University Press, Cambridge (1984).Google Scholar

45 

H.-P. Herzig, Micro-Optics: Elements, Systems and Applications, Taylor and Francis, London (1997).Google Scholar

46 

M. C. Hutley, Diffraction Gratings, Academic Press, London (1982).Google Scholar

47 

K. Iga, Y. Kokubun and M. Oikawa, Fundamentals of Micro-Optics, Academic Press, New York (1984).Google Scholar

48 

J. Jahns, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29(7), 931–936 (1990).Google Scholar

49 

T. R. Jay, M. B. Stern and R. E. Knowlden, “Effect of refractive microlens array fabrication parameters on optical quality,” Proc. SPIE 1751, 236–245 (1992) [doi: 10.1117/12.138886].Google Scholar

50 

B. K. Jennisson, “Analysis of the leakage from computer-generated holograms synthetized by direct binary search,” J. Opt. Soc. Am. A 6(2), 234–243 (1989).Google Scholar

51 

A. Kathman, “Phase grating optimization using genetic algorithms,” OSA Tech. Digest 9, 71–73 (1993).Google Scholar

52 

E.-B. Kley, H.-J. Fuchs and A. Kilian, “Fabrication of glass lenses by melting technology,” Proc. SPIE 4440, 85–92 (2001) [doi: 10.1117/12.448027].Google Scholar

53 

E.-B. Kley, F. Thomas, U. D. Zeitner, L. Witti and H. Aagedal, “Fabrication of micro optical surface profiles by using grayscale masks,” Proc. SPIE 3276, 254–262 (1997) [doi: 10.1117/12.302404].Google Scholar

54 

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).Google Scholar

55 

U. Kohler et al., “Fabrication of microlenses by combining silicon technology, mechanical micromachining and plastic molding,” Proc. SPIE 2687, 18–22 (1996) [doi: 10.1117/12.234632].Google Scholar

56 

R. K. Kostuk, “Hybrid diffractive elements for planar optics,” OSA Tech. Digest 9, 38–41 (1993).Google Scholar

57 

M. Kulishov et al., “Nonreciprocal waveguide Bragg gratings,” Opt. Express 13(8), 3068–3078 (2005).Google Scholar

58 

G. N. Laurence, “Using rules of thumb in the design of physical optics systems,” OSA Tech. Digest 9, 12–13 (1993).Google Scholar

59 

B. Layet, I. G. Cormack and M. R. Taghizadeh, “Stripe color separation with diffractive optics,” Appl. Opt. 38, 7193–7201 (1999).Google Scholar

60 

W.-H. Lee, “Method for converting a Gaussian laser beam into a uniform beam,” Opt. Commun. 36(6), 469–471 (1981).Google Scholar

61 

D. Leseberg, “Computer-generated holograms: cylindrical, conical and helical waves,” Appl. Opt. 26(20), 4385–4390 (1987).Google Scholar

62 

B. Lesem, P. M. Hirsch and J. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).Google Scholar

63 

M. D. Levenson et al., “The phase-shifting mask II: imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices 31(6), 753–763 (1984).Google Scholar

64 

B. J. Lin, “Where is the lost resolution?” Proc. SPIE 0633, 44–40 (1986) [doi: 10.1117/12.963701].Google Scholar

65 

A. W. Lohman and D. P. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967).Google Scholar

66 

C. W. Londoño, W. T. Plummer and P. P. Clark, “Athermalization of a single-component lens with diffractive optics,” Appl. Opt. 32(13), 2295–2302 (1993).Google Scholar

67 

C. W. Londoño, “Hybrid diffractive/refractive lenses and achromats,” Appl. Opt. 27(14), 2960–2971 (1988).Google Scholar

68 

C. Y. Luo, S, G, Johnson, J. D. Joannopoulos and J. B. Pendry, “Sub-wavelength imaging in photonic crystals,” Phys. Rev. B, 68, 045115 (2003).Google Scholar

69 

U. Mahlab, “Genetic algorithm for optical pattern recognition” Opt. Lett. 16(9), 648–650 (1991).Google Scholar

70 

E. W. Marchand and E. Wolf, “Boundary diffraction wave in the domain of the Rayleigh–Kirchhoff diffraction theory,” J. Opt. Soc. Am. 52(7), 761–767 (1962).Google Scholar

71 

S. Masuda, T. Nose and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Japan J. Appl. Phys. 37, L1251–L1253 (1998).Google Scholar

72 

J. M. Miller, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32(14), 2519–2525 (1993).Google Scholar

73 

S. E. Miller, “Integrated optics: an introduction,” Bell Sys. Tech. J. 48, 2059–2068 (1969).Google Scholar

74 

K. Miyamoto, “The phase Fresnel lens,” J. Opt. Soc. Am. 17, 17–21 (1961).Google Scholar

75 

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71(7), 811– 818 (July 1981).Google Scholar

76 

D. T. Moore ed. , Selected Papers on Gradient-Index Optics, SPIE Press, Bellingham, WA (1993).Google Scholar

77 

M. E. Motamedi, W. H. Southwell and W. J. Gunning, “Antireflection surfaces in silicon using binary optic technology,” Appl. Opt. 31(22), 4371–4376 (1992).Google Scholar

78 

M. E. Motamedi et al., “Micro-optic integration with focal plane arrays,” Opt. Eng. 36(5), 1374–1381 (1997) [doi: 10.1117/1.601347].Google Scholar

79 

C. Neipp, I. Pascual and A. Belendez, “Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms,” Opt. Express 10(23), 1374–1383 (2002).Google Scholar

80 

A. R. Nelson et al. , “Computer-generated electrically switchable holographic composites,” Proc. SPIE 2404, 132–143, (1995) [doi: 10.1117/12.207469].Google Scholar

81 

E. Noponen, “Complex amplitude modulation by high-carrier-frequency diffractive elements,” J. Opt. Soc. Am. A 13(7), 1422–1428 (1996).Google Scholar

82 

D. O'Shea, “Gray scale masks for diffractive optics fabrication: II. Spatially filtered halftone screens,” Appl. Opt. 34(32), 7518–6526 (1995).Google Scholar

83 

R. Petit et al. , Electromagnetic Theory of Gratings, Springer-Verlag, Berlin (1980).Google Scholar

84 

R. D. Rallison, “Wavelength compensation by time-reverse ray tracing,” in Diffractive and Holographic Optics Technology II, I. Cindrich and S. H. Lee, eds. , 217–226 (1995).Google Scholar

85 

D. W. Ricks, “Scattering from diffractive optics,” Diffractive and Miniaturized Optics, S. Lee, ed. , SPIE Critical Reviews, 187–1211, SPIE Press, Bellingham, WA (1993).Google Scholar

86 

D. Schurig et al. , “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).Google Scholar

87 

F. P. Shvartsman, “Holographic optical elements by dry photopolymer embossing,” Proc. SPIE 1461, 313–320 (1991) [doi: 10.1117/12.44742].Google Scholar

88 

F. P. Shvartsman, “SURPHEXTM: new dry photopolymers for replication of surface relief diffractive optics,” Proc. SPIE 1732, 121–130 (1993) [doi: 10.1117/12.140390].Google Scholar

89 

W. Singer, “Gradient index microlenses: numerical investigations of different spherical index profiles with the wave propagation method,” Appl. Opt. 34(13), 2165–2171 (1995).Google Scholar

90 

S. Sinzinger, “Transition between diffractive and refractive micro-optical components,” Appl. Opt. 34(26), 5970–5976 (1995).Google Scholar

91 

S. Sinzinger and J. Jahns, Microoptics, VCH, Weinheim, Germany (1999).Google Scholar

92 

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).Google Scholar

93 

S. Somekh, “Introduction to ion and plasma etching,” J. Vac. Sci. Technol. 13(5), 1003–1007 (1976).Google Scholar

94 

W. H. Southwell, “Ray-tracing kinoform lens surfaces,” Appl. Opt. 31(13), 2244–2247 (1992).Google Scholar

95 

G. H. Spencer and M. V. R. K. Murty, “General ray-tracing procedure,” J. Opt. Soc. Am. 52(6), 650 (1951).Google Scholar

96 

M. B. Stern, “Fabricating binary optics: Process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).Google Scholar

97 

T. J. Suleski, “Gray scale masks for diffractive optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34(32), 7507–7517 (1995).Google Scholar

98 

T. J. Suleski, B. Baggett and W. F. Delaney, “Fabrication of high spatial frequency gratings through computer generated near-field holography,” Opt. Lett. 24(9), 602–604 (1999).Google Scholar

99 

T. J. Suleski and R. D. TeKolste, “Roadmap for micro-optics fabrication,” Proc. SPIE 4440, 1–15 (2001) [doi: 10.1117/12.448025].Google Scholar

100 

G. J. Swanson, Binary Optics Technology: The theory and design of multi-level diffractive optical elements, MIT/Lincoln Lab Tech. Report 854, Lexington, MA (1989).Google Scholar

101 

G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt Eng. 28, 605–608 (1989) [doi: 10.1117/12.7977008].Google Scholar

102 

W. C. Sweatt et al. , “Mass-producible microholographic tags,” Proc. SPIE 2689, 170–175 (1995) [doi: 10.1117/12.239621].Google Scholar

103 

W. C. Sweatt, “Mathematical equivalence between a holographic optical element and an ultra-high index lens,” J. Opt. Soc. Am. A 69, 486–487 (1979).Google Scholar

104 

M. Tanigami, “Low-wavefront aberration and high temperature stability molded micro-Fresnel lenses,” IEEE Photon. Technol. Lett. 1(11), 384–385 (1989).Google Scholar

105 

R. D. TeKolste, W. H. Welch and M. R. Feldman, “Injection molding for diffractive optics,” Proc. SPIE 2404, 129–131 (1995) [doi: 10.1117/12.207463].Google Scholar

106 

J. Turunen and F. Wyrowsky, Diffractive Optics for Industrial and Commercial Applications, Akademie Verlag, Berlin (1997).Google Scholar

107 

H.-G. Unger, Planar Optical Waveguides and Fibers, Clarendon Press, Oxford (1977).Google Scholar

108 

K. S. Urquhart, R. Stein and S. H. Lee, “Computer-generated holograms fabricated by direct write of positive electron-beam resist,” Opt. Lett. 18(4), 308–310 (1993).Google Scholar

109 

M. V. Vasnetsov, “Oscillations conditions in a gain grating in the Bragg diffraction regime,” Opt. Commun. 282(10), 2028–2031 (2009).Google Scholar

110 

W. B. Veldkamp, “Binary Optics: the Optics Technology of the Decade,” 37th Int. Symp. Electron, Ion and Photon Beams, San Diego, CA (1993).Google Scholar

111 

W. B. Weldkamp and T. J. McHugh, Binary Optics, Scientific American 5, 50–55 (1992).Google Scholar

112 

E. A. Wilson, D. T. Miller and K. J. Bernard, “Fill factor improvement using microlens arrays,” Proc. SPIE 3276, 123–133 (1998) [doi: 10.1117/12.302390].Google Scholar

113 

A. Wong, Optical Imaging in Projection Microlithography, SPIE Press, Bellingham, WA (2005) [doi: 10.1117/3.612961].Google Scholar

114 

F. Wyrowski, “Design theory of diffractive elements in the paraxial domain,” J. Opt. Soc. Am. A 10(7), 1553–1561 (1993).Google Scholar

115 

F. Wyrowski, “Digital phase holograms: coding and quantization with an error diffusion concept,” Opt. Commun. 72(2), 37–41 (1989).Google Scholar

116 

F. Wyrowski, “Iterative quantization of digital amplitude holograms,” Appl. Opt. 28(18), 3864–3870 (1989).Google Scholar

117 

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).Google Scholar

118 

E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc., Am. B 10, 283–295 (1993).Google Scholar

119 

G. Yang, “Iterative optimization approach for the design of diffractive phase elements simultaneously implementing several optical functions,” J. Opt. Soc. Am. A 11(5), 1632–1640 (1994).Google Scholar

120 

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13(2), 139–150 (2014).Google Scholar

121 

H. Zappe, “Novel components for tunable micro-optics,” Optoelectronics Lett. 4(2), 86–88 (2008).Google Scholar

122 

F. Zolla, S. Guennea, A. Nicolet and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).Google Scholar

The author with a Google Glass headsetbio1.jpg

For over 20 years, Bernard Kress has made significant scientific contributions as a researcher, professor, consultant, advisor, instructor, and author, making major contributions to digital micro-optical systems for consumer electronics, generating IP, and teaching and transferring technological solutions to industry. Many of the world’s largest producers of optics and photonics products have consulted with him on a wide range of applications, including laser-material processing, optical security, optical telecom/datacom, optical data storage, optical computing, optical motion sensors, optical gesture sensing, depth mapping, heads-up displays, head-mounted displays, virtual-reality headsets and smart glasses, pico-projectors, micro-displays, digital imaging processing, and biotechnology sensors.

Kress has more than 30 international patents. He has published four books, a book chapter, 102 refereed publications and proceedings, and numerous technical publications. He has also been involved in European research in micro-optics, including the Eureka Flat Optical Technology and Applications (FOTA) project and the Network for Excellence in Micro-Optics (NEMO) project. He is currently the Optics Lead of the Advanced Prototypes Lab at Google[X] Labs in Mountain View, California.

TOPIC
17 PAGES

SHARE
Back to Top