Translator Disclaimer
Abstract
This section contains the bibliography and the index.

Bibliography

1 

Bass M., Handbook of Optics, I & II McGraw-Hill, New York (1995). Google Scholar

2 

Beck J. C., Wan M., Kinch J., Robinson P., Mitra R., Critchfield F. Ma, Campbell J., ““The HgCdTe electron avalanche photodiode,”,” J. Electronic Materials, 35 (6), 1166–1173 (2006). Google Scholar

3 

Boreman G. D., Basic Electro-Optics for Electrical Engineers, SPIE Press, Bellingham, WA (1998). Google Scholar

4 

Boreman G. D., Modulation Transfer Function in Optical and Electro-Optical Systems, SPIE Press, Bellingham, WA (2001). Google Scholar

5 

Boreman G. D., Daniels A., ““Use of spatial noise targets in image quality assessment,”,” Proc. International Congress of Photographic Science, 448–451 (1994). Google Scholar

6 

Boreman G. D., Sun Y., James A. B., ““Generation of random speckle with an integrating sphere,”,” Opt. Eng., 29 (4), 339–342 (1990). Google Scholar

7 

Born M., Wolf E., Principles of Optics, Pergamon Press, New York (1986). Google Scholar

8 

Boyd R. W., Radiometry and the Detection of Optical Radiation, Wiley, New York (1983). Google Scholar

9 

Daniels A., Encyclopedia of Optical Engineering, Marcel Dekker, New York (2003). Google Scholar

10 

Daniels A., Nondestructive Testing Handbook, ASNT, Columbus, OH (2001). Google Scholar

11 

Daniels A., Boreman G. D., ““Diffraction effects of infrared halftone transparencies,”,” Infrared Phys. Technol., 36 (2), 623–637 (1995). Google Scholar

12 

Daniels A., Boreman G. D., Ducharme A. D., Sapir E., ““Random transparency targets for MTF measurementsin the visible and infrared,”,” Opt. Eng., 34 (3), 860–868 1995). Google Scholar

13 

Dereniak E. L., Boreman G. D., Infrared Detectors and Systems, John Wiley & Sons, New York (1996). Google Scholar

14 

Driggers R. G., Jacobs E. L., Vollmerhausen R. H., O’Kane B., Self M., Moyer S., Hixon J. G., Page G., Krapels K., Dixon D., ““Current infrared target acquisition approach for military sensor design and wargaming,”,” Proc. SPIE, 6207 620709 (2006). Google Scholar

15 

Ducharme A. D., Boreman G. D., ““Holographic elements for modulation transfer function testing of detector arrays,”,” Opt. Eng., 34 (8), 2455–2458 (1995). Google Scholar

16 

Friedman M. H., Tomkinson D. M., Scott L. B., O’Kane B. L., D’Agostino J. A., ““Standard night vision thermal modeling parameters,”,” Proc. SPIE, 1689 204–212 (1992). Google Scholar

17 

Gaskill J. D., Linear Systems, Fourier Transforms, and Optics, Wiley, New York (1978). Google Scholar

18 

Goodman J. W., Introduction to Fourier Optics, McGraw Hill, New York (1968). Google Scholar

19 

Greivenkamp J. E., Field Guide to Geometrical Optics, SPIE Press, Bellingham, WA (2004). Google Scholar

20 

Guellec F., Tchagaspanian M., de Borniol E., Castelein P., Perez A., Rothman J., ““Advanced pixel design for infrared 3D LADAR imaging,”,” Proc. SPIE, 6940 69402M (2008). Google Scholar

21 

Hecht E., Zajac A., Optics, Addison-Wesley, Boston (1974). Google Scholar

22 

Hixson J. G., Jacobs E., Vollmerhausen R. H., ““Target detection cycle criteria when using the targeting task performance metric,”,” Proc. SPIE, 5612 275–283 (2004). Google Scholar

23 

Holst G. C., Common Sense Approach to Thermal Imaging Systems, SPIE Press, Bellingham, WA (2000). Google Scholar

24 

Holst G. C., Testing and Evaluation of Infrared Imaging Systems, JCD Publishing, Winter Park, FL (1993). Google Scholar

25 

Hudson R. D., Infrared System Engineering, Wiley, New York (1969). Google Scholar

26 

Jenkins F. A., White H. E., Fundamentals of Optics, McGraw-Hill, New York (1981). Google Scholar

27 

Keyes R. J., Optical and Infrared Detectors, Topics in Applied Physics, 19 Springer-Verlag, New York (1980). Google Scholar

28 

Kingston R. H., Detection of Optical and Infrared Radiation, Springer-Verlag, New York (1979). Google Scholar

29 

Lane R., Health J., ““Innovations in IR scene simulator design,”,” Proc. SPIE, 3368 78–87 (1998). Google Scholar

30 

Lloyd J. M., Thermal Imaging Systems, Plenum, New York(1975). Google Scholar

31 

Nagaraja N. S., ““Effect of luminance noise on contrast thresholds,”,” J. Opt. Soc. Am., 54 (7), 950–955 (1964). Google Scholar

32 

Night Vision Thermal and Image Processing Model User Manual, Rev., 9 2006). Google Scholar

33 

Park S. K., Schwengerdt R., Kaczynski M., ““MTF for sampled imaging systems,”,” Applied Optics, 23 2572–2582 (1984). Google Scholar

34 

Perrais G., Rothman J., Destefanis G., Chamonal J., ““Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,”,” J. Electronic Materials, 37 (9), 1261–1273 (2008). Google Scholar

35 

Raghavan M., ““Sources of Visual Noise,”,” New York (1989). Google Scholar

36 

Reinchenbach S. E., Park S. K., Narayanswamy R., ““Characterizing digital image acquisition devices,”,” Opt. Eng., 30 (2), 170–177 (1991). Google Scholar

37 

Rogalski A., Selected Papers on Infrared Detectors: Developments, SPIE Press, Bellingham, WA (2004). Google Scholar

38 

Rothman J., Perrais G., de Borniol E., Castelein P., Baier N., Guellec F., Tchagaspanian M., Ballet P., Mollard L., Gout S., Perez A., Fournier M., Chamonal J. P., Tribolet P. M., Destefanis G., ““HgCdTe APD: Focal plane array development at CEA Leti-Minatec,”,” Proc. SPIE, 6940 69402N (2008). Google Scholar

39 

Schneider H., Liu H. C., Quantum Well Infrared Photo-detectors, Springer, New York (2007). Google Scholar

40 

Sensiper M., Boreman G. D., Ducharme A. D., Snyder D. R., ““MTF testing of detector arrays using narrow-band laser speckle,”,” Opt. Eng., 32 (2), 395–400 (1993). Google Scholar

41 

Smith W. J., Modern Optical Engineering, McGraw-Hill, New York, (2000). Google Scholar

42 

Vollmerhausen R. H., ““Incorporating display limitations into night vision performance models,”,” IRIS Passive Sensors, 2 11–31 (1995). Google Scholar

43 

Vollmerhausen R. H., Reago D. A., Driggers R. G., Analysis and Evaluation ofSampled Imaging Systems, SPIE Press, Bellingham, WA (2010). Google Scholar

44 

Vollmerhausen R. H., Jacobs E. L., Driggers R. G., ““New metric for predicting target acquisition performance,”,” Opt. Eng, 43 (11), 2806–2818 (2004). Google Scholar

45 

Vollmerhausen R. H., Jacobs E. L., Hixson J. G., Friedman M., ““The targeting task performance (TTP) metric,”,” Technical Report AMSEL-NV-TR-230, 2006). Google Scholar

46 

Wittenstain W., Fontanella J. C., Newbery A. R., Baars J., ““The definition of OTF and the measurement of aliasing for sampled imaging systems,”,” Optica Acta, 29 41–50 (1982). Google Scholar

47 

Wolfe W. L., Introduction to Infrared System Design, SPIE Press, Bellingham, WA (1996). Google Scholar

48 

Wolfe W. L., Zissis G. J., The Infrared Handbook, Infrared Information Analysis (IRIA) Center, Ann Arbor, MI (1989). Google Scholar

page174-1.jpg Arnold Daniels is a senior lead engineer with extensive experience in the conceptual definition of advanced infrared (IR), optical, and electro-optical (EO) systems. His background consists of technical contributions to applications for direct energy weapon (DEW) systems, infrared search & track (IRST), thermal imaging systems (TIS), and intelligence, surveillance & reconnaissance (ISR) systems. His other areas of technical expertise include infrared radiometry, performance specification of thermal imaging systems, thermographic nondestructive testing, stray light analysis, optical design, precision optical alignment, adaptive optics, Fourier analysis, image processing, and data acquisition systems. He received a B.S.in electro-mechanical engineering from the University Autonomous of Mexico and a B.S. in electrical engineering from the Israel Institute of Technology (Technion). He earned an M.S. in electrical engineering from the University of Tel-Aviv and received a doctoral degree in electro-optics from the school of Optics (CREOL) at the University of Central Florida. In 1995, he received the Rudolf Kingslake medal and prize for the most noteworthy original paper to appear in SPIE’s Optical Engineering. He is presently developing electro-optical and infrared sensor systems for aerospace and defense applications.

TOPIC
12 PAGES

SHARE
Advertisement
Advertisement
Back to Top