Access to eBooks is limited to institutions that have purchased or currently subscribe to the SPIE eBooks program. eBooks are not available via an individual subscription. SPIE books (print and digital) may be purchased individually on SPIE.Org.

Contact your librarian to recommend SPIE eBooks for your organization.
Abstract
This section contains the bibliography and the index.

Bibliography

1 

Bass, M., Handbook of Optics, Vols. I & II, McGraw-Hill, New York (1995). Google Scholar

2 

Beck, J. C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Critchfield, F. Ma, and Campbell J., “The HgCdTe electron avalanche photodiode,” J. Electronic Materials, 35(6), 1166–1173 (2006). Google Scholar

3 

Boreman, G. D., Basic Electro-Optics for Electrical Engineers, SPIE Press, Bellingham, WA (1998). [doi:10.1117/3.294180]. Google Scholar

4 

Boreman, G. D., Modulation Transfer Function in Optical and Electro-Optical Systems, SPIE Press, Bellingham, WA (2001). [doi:10.1117/3.419857]. Google Scholar

5 

Boreman, G. D., and Daniels A., “Use of spatial noise targets in image quality assessment,” Proc. International Congress of Photographic Science, 448–451 (1994). Google Scholar

6 

Boreman, G. D., Sun Y., and James A. B., “Generation of random speckle with an integrating sphere,” Opt. Eng. 29(4), 339–342 (1990). [doi:10.1117/12.55601]. Google Scholar

7 

Born, M. and Wolf E., Principles of Optics, Pergamon Press, New York (1986). Google Scholar

8 

Boyd, R. W., Radiometry and the Detection of Optical Radiation, Wiley, New York (1983). Google Scholar

9 

Daniels, A., Encyclopedia of Optical Engineering, Marcel Dekker, New York (2003). Google Scholar

10 

Daniels, A. Nondestructive Testing Handbook, ASNT, Columbus, OH (2001). Google Scholar

11 

Daniels A. and Boreman G. D., “Diffraction effects of infrared halftone transparencies,” Infrared Phys. Technol. 36(2), 623–637 (1995). Google Scholar

12 

Daniels, A., Boreman G. D., Ducharme A. D., and Sapir E., “Random transparency targets for MTF measurementsin the visible and infrared,” Opt. Eng. 34(3), 860–868 (1995). [doi:10.1117/12.190433]. Google Scholar

13 

Dereniak, E. L. and Boreman G. D., Infrared Detectors and Systems, John Wiley & Sons, New York (1996). Google Scholar

14 

Driggers, R. G., Jacobs E. L., Vollmerhausen R. H., O’Kane B., Self M., Moyer S., Hixon J. G., Page G., Krapels K., and Dixon D., “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006). [doi:10.1117/12.660963]. Google Scholar

15 

Ducharme, A. D. and Boreman G. D., “Holographic elements for modulation transfer function testing of detector arrays,” Opt. Eng. 34(8), 2455–2458 (1995). [doi:10.1117/12.207144]. Google Scholar

16 

Friedman, M. H., Tomkinson D. M., Scott L. B., O’Kane B. L., and D’Agostino J. A., “Standard night vision thermal modeling parameters,” Proc. SPIE 1689, 204–212 (1992). [doi:10.1117/12.137951]. Google Scholar

17 

Gaskill, J. D., Linear Systems, Fourier Transforms, and Optics, Wiley, New York (1978). Google Scholar

18 

Goodman, J. W., Introduction to Fourier Optics, McGraw Hill, New York (1968). Google Scholar

19 

Greivenkamp, J. E., Field Guide to Geometrical Optics, SPIE Press, Bellingham, WA (2004). [doi:10.1117/3.547461]. Google Scholar

20 

Guellec, F., Tchagaspanian M., de Borniol E., Castelein P., Perez A., and Rothman J., “Advanced pixel design for infrared 3D LADAR imaging,” Proc. SPIE 6940, 69402M (2008). [doi:10.1117/12.779284]. Google Scholar

21 

Hecht, E. and Zajac A., Optics, Addison-Wesley, Boston (1974). Google Scholar

22 

Hixson, J. G., Jacobs E., and Vollmerhausen R. H., “Target detection cycle criteria when using the targeting task performance metric,” Proc. SPIE 5612, 275–283 (2004). [doi:10.1117/12.577830]. Google Scholar

23 

Holst, G. C., Common Sense Approach to Thermal Imaging Systems, SPIE Press, Bellingham, WA (2000). Google Scholar

24 

Holst, G. C., Testing and Evaluation of Infrared Imaging Systems, JCD Publishing, Winter Park, FL (1993). Google Scholar

25 

Hudson, R. D., Infrared System Engineering, Wiley, New York (1969). Google Scholar

26 

Jenkins, F. A. and White H. E., Fundamentals of Optics, McGraw-Hill, New York (1981). Google Scholar

27 

Keyes, R. J., Optical and Infrared Detectors, Topics in Applied Physics 19, Springer-Verlag, New York (1980). Google Scholar

28 

Kingston, R. H., Detection of Optical and Infrared Radiation, Springer-Verlag, New York (1979). Google Scholar

29 

Lane, R. and Health J., “Innovations in IR scene simulator design,” Proc. SPIE 3368, 78–87 (1998). [doi:10.1117/12.316358]. Google Scholar

30 

Lloyd, J. M., Thermal Imaging Systems, Plenum, New York (1975). Google Scholar

31 

Nagaraja, N. S., “Effect of luminance noise on contrast thresholds,” J. Opt. Soc. Am. 54(7), 950–955 (1964). Google Scholar

32 

NVESD, Night Vision Thermal and Image Processing Model User Manual, Rev. 9 (2006). Google Scholar

33 

Park, S. K., Schwengerdt R., and Kaczynski M., “MTF for sampled imaging systems,” Applied Optics 23, 2572–2582 (1984). Google Scholar

34 

Perrais, G., Rothman J., Destefanis G., and Chamonal J., “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electronic Materials, 37(9), 1261–1273 (2008). Google Scholar

35 

Raghavan, M., “Sources of Visual Noise,” Ph.D. Dissertation (Syracuse Univ.), Syracuse, New York, 1989. Google Scholar

36 

Reinchenbach, S. E., Park S. K., and Narayanswamy R., “Characterizing digital image acquisition devices,” Opt. Eng. 30(2), 170–177 (1991). [doi:10.1117/12.55783]. Google Scholar

37 

Rogalski, A., Selected Papers on Infrared Detectors: Developments, SPIE Press, Bellingham, WA (2004). Google Scholar

38 

Rothman, J., Perrais G., de Borniol E., Castelein P., Baier N., Guellec F., Tchagaspanian M., Ballet P., Mollard L., Gout S., Perez A., Fournier M., Chamonal J. P., Tribolet P. M., and Destefanis G., “HgCdTe APD: Focal plane array development at CEA Leti-Minatec,” Proc. SPIE 6940, 69402N (2008). [doi:10.1117/12.780447]. Google Scholar

39 

Schneider, H. and Liu H. C., Quantum Well Infrared Photo-detectors, Springer, New York (2007). Google Scholar

40 

Sensiper, M., Boreman G. D., Ducharme A. D., and Snyder D. R., “MTF testing of detector arrays using narrow-band laser speckle,” Opt. Eng. 32(2), 395–400 (1993). [doi:10.1117/12.60851]. Google Scholar

41 

Smith, W. J., Modern Optical Engineering, McGraw-Hill, New York, (2000). Google Scholar

42 

Vollmerhausen, R. H., “Incorporating display limitations into night vision performance models,” IRIS Passive Sensors 2, 11–31 (1995). Google Scholar

43 

Vollmerhausen, R. H., Reago D. A., Jr., and Driggers R. G., Analysis and Evaluation of Sampled Imaging Systems, SPIE Press, Bellingham, WA (2010). [doi:10.1117/3.853462]. Google Scholar

44 

Vollmerhausen, R. H., Jacobs E. L., and Driggers R. G., “New metric for predicting target acquisition performance,” Opt. Eng. 43(11), 2806–2818 (2004). [doi:10.1117/1.1799111]. Google Scholar

45 

Vollmerhausen, R. H., Jacobs E. L., Hixson J. G., and Friedman M., “The targeting task performance (TTP) metric,” Technical Report AMSEL-NV-TR-230 (2006). Google Scholar

46 

Wittenstain, W., Fontanella J. C., Newbery A. R., and Baars J., “The definition of OTF and the measurement of aliasing for sampled imaging systems,” Optica Acta 29, 41–50 (1982). Google Scholar

47 

Wolfe, W. L., Introduction to Infrared System Design, SPIE Press, Bellingham, WA (1996). [doi: 10.1117/3.226006]. Google Scholar

48 

Wolfe, W. L. and Zissis G. J., The Infrared Handbook, Infrared Information Analysis (IRIA) Center, Ann Arbor, MI (1989). Google Scholar

page174-1.jpg Arnold Daniels is a senior lead engineer with extensive experience in the conceptual definition of advanced infrared (IR), optical, and electro-optical (EO) systems. His background consists of technical contributions to applications for direct energy weapon (DEW) systems, infrared search & track (IRST), thermal imaging systems (TIS), and intelligence, surveillance & reconnaissance (ISR) systems. His other areas of technical expertise include infrared radiometry, performance specification of thermal imaging systems, thermographic nondestructive testing, stray light analysis, optical design, precision optical alignment, adaptive optics, Fourier analysis, image processing, and data acquisition systems. He received a B.S.in electro-mechanical engineering from the University Autonomous of Mexico and a B.S. in electrical engineering from the Israel Institute of Technology (Technion). He earned an M.S. in electrical engineering from the University of Tel-Aviv and received a doctoral degree in electro-optics from the school of Optics (CREOL) at the University of Central Florida. In 1995, he received the Rudolf Kingslake medal and prize for the most noteworthy original paper to appear in SPIE’s Optical Engineering. He is presently developing electro-optical and infrared sensor systems for aerospace and defense applications.

TOPIC
12 PAGES

SHARE
Back to Top