This section contains the bibliography and the index.



Bass, M., Handbook of Optics, Vols. I & II, McGraw-Hill, New York (1995). Google Scholar


Beck, J. C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Critchfield, F. Ma, and Campbell J., “The HgCdTe electron avalanche photodiode,” J. Electronic Materials, 35(6), 1166–1173 (2006). Google Scholar


Boreman, G. D., Basic Electro-Optics for Electrical Engineers, SPIE Press, Bellingham, WA (1998). [doi:10.1117/3.294180]. Google Scholar


Boreman, G. D., Modulation Transfer Function in Optical and Electro-Optical Systems, SPIE Press, Bellingham, WA (2001). [doi:10.1117/3.419857]. Google Scholar


Boreman, G. D., and Daniels A., “Use of spatial noise targets in image quality assessment,” Proc. International Congress of Photographic Science, 448–451 (1994). Google Scholar


Boreman, G. D., Sun Y., and James A. B., “Generation of random speckle with an integrating sphere,” Opt. Eng. 29(4), 339–342 (1990). [doi:10.1117/12.55601]. Google Scholar


Born, M. and Wolf E., Principles of Optics, Pergamon Press, New York (1986). Google Scholar


Boyd, R. W., Radiometry and the Detection of Optical Radiation, Wiley, New York (1983). Google Scholar


Daniels, A., Encyclopedia of Optical Engineering, Marcel Dekker, New York (2003). Google Scholar


Daniels, A. Nondestructive Testing Handbook, ASNT, Columbus, OH (2001). Google Scholar


Daniels A. and Boreman G. D., “Diffraction effects of infrared halftone transparencies,” Infrared Phys. Technol. 36(2), 623–637 (1995). Google Scholar


Daniels, A., Boreman G. D., Ducharme A. D., and Sapir E., “Random transparency targets for MTF measurementsin the visible and infrared,” Opt. Eng. 34(3), 860–868 (1995). [doi:10.1117/12.190433]. Google Scholar


Dereniak, E. L. and Boreman G. D., Infrared Detectors and Systems, John Wiley & Sons, New York (1996). Google Scholar


Driggers, R. G., Jacobs E. L., Vollmerhausen R. H., O’Kane B., Self M., Moyer S., Hixon J. G., Page G., Krapels K., and Dixon D., “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006). [doi:10.1117/12.660963]. Google Scholar


Ducharme, A. D. and Boreman G. D., “Holographic elements for modulation transfer function testing of detector arrays,” Opt. Eng. 34(8), 2455–2458 (1995). [doi:10.1117/12.207144]. Google Scholar


Friedman, M. H., Tomkinson D. M., Scott L. B., O’Kane B. L., and D’Agostino J. A., “Standard night vision thermal modeling parameters,” Proc. SPIE 1689, 204–212 (1992). [doi:10.1117/12.137951]. Google Scholar


Gaskill, J. D., Linear Systems, Fourier Transforms, and Optics, Wiley, New York (1978). Google Scholar


Goodman, J. W., Introduction to Fourier Optics, McGraw Hill, New York (1968). Google Scholar


Greivenkamp, J. E., Field Guide to Geometrical Optics, SPIE Press, Bellingham, WA (2004). [doi:10.1117/3.547461]. Google Scholar


Guellec, F., Tchagaspanian M., de Borniol E., Castelein P., Perez A., and Rothman J., “Advanced pixel design for infrared 3D LADAR imaging,” Proc. SPIE 6940, 69402M (2008). [doi:10.1117/12.779284]. Google Scholar


Hecht, E. and Zajac A., Optics, Addison-Wesley, Boston (1974). Google Scholar


Hixson, J. G., Jacobs E., and Vollmerhausen R. H., “Target detection cycle criteria when using the targeting task performance metric,” Proc. SPIE 5612, 275–283 (2004). [doi:10.1117/12.577830]. Google Scholar


Holst, G. C., Common Sense Approach to Thermal Imaging Systems, SPIE Press, Bellingham, WA (2000). Google Scholar


Holst, G. C., Testing and Evaluation of Infrared Imaging Systems, JCD Publishing, Winter Park, FL (1993). Google Scholar


Hudson, R. D., Infrared System Engineering, Wiley, New York (1969). Google Scholar


Jenkins, F. A. and White H. E., Fundamentals of Optics, McGraw-Hill, New York (1981). Google Scholar


Keyes, R. J., Optical and Infrared Detectors, Topics in Applied Physics 19, Springer-Verlag, New York (1980). Google Scholar


Kingston, R. H., Detection of Optical and Infrared Radiation, Springer-Verlag, New York (1979). Google Scholar


Lane, R. and Health J., “Innovations in IR scene simulator design,” Proc. SPIE 3368, 78–87 (1998). [doi:10.1117/12.316358]. Google Scholar


Lloyd, J. M., Thermal Imaging Systems, Plenum, New York (1975). Google Scholar


Nagaraja, N. S., “Effect of luminance noise on contrast thresholds,” J. Opt. Soc. Am. 54(7), 950–955 (1964). Google Scholar


NVESD, Night Vision Thermal and Image Processing Model User Manual, Rev. 9 (2006). Google Scholar


Park, S. K., Schwengerdt R., and Kaczynski M., “MTF for sampled imaging systems,” Applied Optics 23, 2572–2582 (1984). Google Scholar


Perrais, G., Rothman J., Destefanis G., and Chamonal J., “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electronic Materials, 37(9), 1261–1273 (2008). Google Scholar


Raghavan, M., “Sources of Visual Noise,” Ph.D. Dissertation (Syracuse Univ.), Syracuse, New York, 1989. Google Scholar


Reinchenbach, S. E., Park S. K., and Narayanswamy R., “Characterizing digital image acquisition devices,” Opt. Eng. 30(2), 170–177 (1991). [doi:10.1117/12.55783]. Google Scholar


Rogalski, A., Selected Papers on Infrared Detectors: Developments, SPIE Press, Bellingham, WA (2004). Google Scholar


Rothman, J., Perrais G., de Borniol E., Castelein P., Baier N., Guellec F., Tchagaspanian M., Ballet P., Mollard L., Gout S., Perez A., Fournier M., Chamonal J. P., Tribolet P. M., and Destefanis G., “HgCdTe APD: Focal plane array development at CEA Leti-Minatec,” Proc. SPIE 6940, 69402N (2008). [doi:10.1117/12.780447]. Google Scholar


Schneider, H. and Liu H. C., Quantum Well Infrared Photo-detectors, Springer, New York (2007). Google Scholar


Sensiper, M., Boreman G. D., Ducharme A. D., and Snyder D. R., “MTF testing of detector arrays using narrow-band laser speckle,” Opt. Eng. 32(2), 395–400 (1993). [doi:10.1117/12.60851]. Google Scholar


Smith, W. J., Modern Optical Engineering, McGraw-Hill, New York, (2000). Google Scholar


Vollmerhausen, R. H., “Incorporating display limitations into night vision performance models,” IRIS Passive Sensors 2, 11–31 (1995). Google Scholar


Vollmerhausen, R. H., Reago D. A., Jr., and Driggers R. G., Analysis and Evaluation of Sampled Imaging Systems, SPIE Press, Bellingham, WA (2010). [doi:10.1117/3.853462]. Google Scholar


Vollmerhausen, R. H., Jacobs E. L., and Driggers R. G., “New metric for predicting target acquisition performance,” Opt. Eng. 43(11), 2806–2818 (2004). [doi:10.1117/1.1799111]. Google Scholar


Vollmerhausen, R. H., Jacobs E. L., Hixson J. G., and Friedman M., “The targeting task performance (TTP) metric,” Technical Report AMSEL-NV-TR-230 (2006). Google Scholar


Wittenstain, W., Fontanella J. C., Newbery A. R., and Baars J., “The definition of OTF and the measurement of aliasing for sampled imaging systems,” Optica Acta 29, 41–50 (1982). Google Scholar


Wolfe, W. L., Introduction to Infrared System Design, SPIE Press, Bellingham, WA (1996). [doi: 10.1117/3.226006]. Google Scholar


Wolfe, W. L. and Zissis G. J., The Infrared Handbook, Infrared Information Analysis (IRIA) Center, Ann Arbor, MI (1989). Google Scholar

page174-1.jpg Arnold Daniels is a senior lead engineer with extensive experience in the conceptual definition of advanced infrared (IR), optical, and electro-optical (EO) systems. His background consists of technical contributions to applications for direct energy weapon (DEW) systems, infrared search & track (IRST), thermal imaging systems (TIS), and intelligence, surveillance & reconnaissance (ISR) systems. His other areas of technical expertise include infrared radiometry, performance specification of thermal imaging systems, thermographic nondestructive testing, stray light analysis, optical design, precision optical alignment, adaptive optics, Fourier analysis, image processing, and data acquisition systems. He received a B.S.in electro-mechanical engineering from the University Autonomous of Mexico and a B.S. in electrical engineering from the Israel Institute of Technology (Technion). He earned an M.S. in electrical engineering from the University of Tel-Aviv and received a doctoral degree in electro-optics from the school of Optics (CREOL) at the University of Central Florida. In 1995, he received the Rudolf Kingslake medal and prize for the most noteworthy original paper to appear in SPIE’s Optical Engineering. He is presently developing electro-optical and infrared sensor systems for aerospace and defense applications.


Back to Top