Translator Disclaimer
Ebook Topic:
Back Matter
Abstract
This back matter contains the bibliography, index, and author biography.

Bibliography

1 

Bates M., Huang B., Dempsey G.T., Zhuang X., ““Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes.”,” Science, 317 1749 (2007). Google Scholar

2 

Benford J. R., Kingslake R., Applied Optics and Optical Engineering, Vol. III,, Academic Press, New York, NY (1965). Google Scholar

3 

Born M., Wolf E., Principles of Optics,, Sixth EditionCambridge University Press, Cambridge, UK (1997). Google Scholar

4 

Bradbury S., Evennett P. J., Contrast Techniques in Light Microscopy,, BIOS Scientific Publishers, Oxford, UK (1996). Google Scholar

5 

Chen T., Milster T., Park S. K., McCarthy B., Sarid D., Poweleit C., Menendez J., ““Near-field solid immersion lens microscope with advanced compact mechanical design.”,” Optical Engineering, 45 (10), 103002 (2006). Google Scholar

6 

Chen T., Milster T. D., Yang S. H., Hansen D., ““Evanescent imaging with induced polarization by using a solid immersion lens.”,” Optics Letters, 32 (2), 124–126 (2007). Google Scholar

7 

Cheng J.-X., Xie X. S., ““Coherent anti-stokes raman scattering microscopy: instrumentation, theory, and applications.”,” J. Phys. Chem. B, 108 827–840 (2004). Google Scholar

8 

Choma M. A., Sarunic M. V., Yang C., Izatt J. A., ““Sensitivity advantage of swept source and Fourier domain optical coherence tomography.”,” Opt. Express, 11 2183–2189 (2003). Google Scholar

9 

de Boer J. F., Cense B., Park B. H., Pierce M. C., Tearney G. J., Bouma B. E., ““Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.”,” Opt Lett, 28 2067–2069 (2003). Google Scholar

10 

Dereniak E., SPIE, Bellingham, WA (2005). Google Scholar

11 

Dereniak E., Geometrical Optics,, Cambridge University Press, Cambridge, UK (2008). Google Scholar

12 

Descour M., University of Arizona(2000). Google Scholar

13 

Goldstein D., Polarized Light,, Second EditionMarcel Dekker, New York, NY (1993). Google Scholar

14 

Goodman D. S., Malacara D., Academic Press, New York, NY (1988). Google Scholar

15 

Goodman J., Introduction to Fourier Optics,, 3rd EditionRoberts and Company Publishers, Greenwood Village, CO (2004). Google Scholar

16 

Goodwin E. P., Wyant J. C., Field Guide to Interferometric Optical Testing,, SPIE Press, Bellingham, WA (2006). Google Scholar

17 

Greivenkamp J. E., Field Guide to Geometrical Optics,, SPIE Press, Bellingham, WA (2004). Google Scholar

18 

Gross H., Blechinger F., Achtner B., Handbook of Optical Systems, Vol. 4: Survey of Optical Instruments,, Wiley-VCH, Germany (2008). Google Scholar

19 

Gustafsson M. G. L., ““Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution.”,” PNAS,, 102 (37), 13081–13086 (2005). Google Scholar

20 

Gustafsson M. G. L., ““Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.”,” Journal of Microscopy,, 198 (2), 82–87 (2000). Google Scholar

21 

Häusler Gerd, Lindner Michael Walter, “““Coherence Radar” and “Spectral Radar”—New tools for dermatological diagnosis.”,” Journal of Biomedical Optics, 3 (1), 21–31 (1998). Google Scholar

22 

Hecht E., Optics,, Fourth EditionAddison-Wesley, Upper Saddle River, New Jersey (2002). Google Scholar

23 

Hell S. W., ““Far-field optical nanoscopy.”,” Science, 316 1153 (2007). Google Scholar

24 

Herman B., Lemasters J., Optical Microscopy: Emerging Methods and Applications,, Academic Press, New York, NY (1993). Google Scholar

25 

Hobbs P., Building Electro-Optical Systems: Making It All Work,, Wiley and Sons, New York, NY (2000). Google Scholar

26 

Holst G., Lomheim T., CMOS/CCD Sensors and Camera Systems,, JCD Publishing, Winter Park, FL (2007). Google Scholar

27 

Huang B., Wang W., Bates M., Zhuang X., ““Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.”,” Science, 319 810 (2008). Google Scholar

28 

Huber R., Wojtkowski M., Fujimoto J. G., ““Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography.”,” Opt. Express, 14 3225–3237 (2006). Google Scholar

30 

Jozwicki R., Teoria Odwzorowania Optycznego, PWN(1988). Google Scholar

31 

Jozwicki R., Optyka Instrumentalna, WNT(1970). Google Scholar

32 

Leitgeb R., Hitzenberger C. K., Fercher A. F., ““Performance of Fourier-domain versus time-domain optical coherence tomography.”,” Opt. Express, 11 889–894 (2003). Google Scholar

33 

Malacara D., Thompson B., Handbook of Optical Engineering,, Marcel Dekker, New York, NY (2001). Google Scholar

34 

Malacara D., Malacara Z., Handbook of Optical Design,, Marcel Dekker, New York, NY (1994). Google Scholar

35 

Malacara D., Servin M., Malacara Z., Interferogram Analysis for Optical Testing,, Marcel Dekker, New York, NY (1998). Google Scholar

36 

Murphy D., Fundamentals of Light Microscopy and Electronic Imaging,, Wiley-Liss, Wilmington, DE (2001). Google Scholar

37 

Mouroulis P., Macdonald J., Geometrical Optics and Optical Design,, Oxford University Press, New York, NY (1997). Google Scholar

38 

Neil M. A. A., Juškaitis R., Wilson T., ““Method of obtaining optical sectioning by using structured light in a conventional microscope.”,” Optics Letters,, 22 (24), 1905–1907 (1997). Google Scholar

40 

Palmer C., Diffraction Grating Handbook,, Newport Corp.(2005). Google Scholar

41 

Patorski K., Handbook of the Moiré Fringe Technique,, Elsevier, Oxford, UK (1993). Google Scholar

42 

Pawley J., Biological Confocal Microscopy,, Third EditionSpringer, New York, NY (2006). Google Scholar

43 

Pierce M. C., Javier D. J., Richards-Kortum R., ““Optical contrast agents and imaging systems for detection and diagnosis of cancer.”,” Int. J. Cancer, 123 1979–1990 (2008). Google Scholar

44 

Pluta M., Advanced Light Microscopy, Volume One: Principle and Basic Properties,, PWN and Elsevier, New York, NY (1988). Google Scholar

45 

Pluta M., Advanced Light Microscopy Volume Two: Specialized Methods,, PWN and Elsevier, New York, NY (1989). Google Scholar

46 

Pluta M., Advanced Light Microscopy, Volume Three: Measuring Techniques,, PWN, Warsaw, Poland; and North Holland, Amsterdam, Holland(1993). Google Scholar

47 

Potma E. O., Evans C. L., Xie X. S., ““Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging.”,” Optics Letters,, 31 (2), 241–243 (2006). Google Scholar

48 

Robinson D. W., Reed G. T., Interferogram Analysis,, IOP Publishing, Bristol, UK (1993). Google Scholar

49 

Rust M. J., Bates M., Zhuang X., ““Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).”,” Nature Methods,, 3 793–796 (2006). Google Scholar

50 

Saleh B., Teich M. C., Fundamentals of Photonics,, Second EditionWiley, New York, NY (2007). Google Scholar

51 

Schwiegerling J., Field Guide to Visual and Ophthalmic Optics,, SPIE Press, Bellingham, WA (2004). Google Scholar

52 

Smith W., Modern Optical Engineering,, Third EditionMcGraw-Hill, New York, NY (2000). Google Scholar

53 

Spector D., Goldman R., Basic Methods in Microscopy,, Cold Spring Harbor Laboratory Press, Woodbury, NY (2006). Google Scholar

55 

Török, P., Kao F. J., Optical Imaging and Microscopy,, Springer, New York, NY (2007). Google Scholar

57 

Wayne R., Light and Video Microscopy,, Elsevier, New York, NY (2009). Google Scholar

58 

Yu H., Cheng P. C., Li P. C., Kao F. J., Multi Modality Microscopy,, World Scientific, Hackensack, NJ (2006). Google Scholar

59 

Yun S. H., Tearney G. J., Vakoc B. J., Shishkov M., Oh W. Y., Desjardins A. E., Suter M. J., Chan R. C., Evans J. A., Jang I. K., Nishioka N. S., de Boer J. F., Bouma B. E., ““Comprehensive volumetric optical microscopy in vivo.”,” Nature Med, 12 1429–1433 (2006). Google Scholar

aut.jpg Tomasz S. Tkaczyk is an Assistant Professor of Bioengineering and Electrical and Computer Engineering at Rice University, Houston, Texas, where he develops modern optical instrumentation for biological and medical applications. His primary research is in microscopy, including endo-microscopy, cost-effective high-performance optics for diagnostics, and multidimensional imaging (snapshot hyperspectral microscopy and spectro-polarimetry).

Professor Tkaczyk received his M.S. and Ph.D. from the Institute of Micromechanics and Photonics, Department of Mechatronics, Warsaw University of Technology, Poland. Beginning in 2003, after his postdoctoral training, he worked as a research professor at the College of Optical Sciences, University of Arizona. He joined Rice University in the summer of 2007.

TOPIC
12 PAGES

SHARE
Advertisement
Advertisement
Back to Top