Access to SPIE eBooks is limited to subscribing institutions. Access is not available as part of an individual subscription. However, books can be purchased on SPIE.Org
Ebook Topic:
Back Matter
Abstract
This back matter contains the bibliography, index, and author biography.

Bibliography

1 

BatesM. HuangB. DempseyG.T. ZhuangX., “Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes.” Science 317, 1749 (2007).Google Scholar

2 

BenfordJ. R., Microscope objectives, Chapter 4 (p. 178), in Applied Optics and Optical Engineering, Vol. III, KingslakeR., ed., Academic Press, New York, NY (1965).Google Scholar

3 

BornM. and WolfE., Principles of Optics, Sixth Edition, Cambridge University Press, Cambridge, UK (1997).Google Scholar

4 

BradburyS. and EvennettP. J., Contrast Techniques in Light Microscopy, BIOS Scientific Publishers, Oxford, UK (1996).Google Scholar

5 

ChenT. MilsterT. ParkS. K. McCarthyB. SaridD. PoweleitC., and MenendezJ., “Near-field solid immersion lens microscope with advanced compact mechanical design.” Optical Engineering 45(10), 103002 (2006).Google Scholar

6 

ChenT. MilsterT. D. YangS. H., and HansenD., “Evanescent imaging with induced polarization by using a solid immersion lens.” Optics Letters 32(2), 124–126 (2007).Google Scholar

7 

ChengJ.-X. and XieX. S., “Coherent anti-stokes raman scattering microscopy: instrumentation, theory, and applications.” J. Phys. Chem. B 108, 827–840 (2004).Google Scholar

8 

ChomaM. A. SarunicM. V. YangC., and IzattJ. A., “Sensitivity advantage of swept source and Fourier domain optical coherence tomography.” Opt. Express 11, 2183–2189 (2003).Google Scholar

9 

de BoerJ. F. CenseB. ParkB. H. PierceM. C. TearneyG. J., and BoumaB. E., “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).Google Scholar

10 

DereniakE., materials for SPIE Short Course on Imaging Spectrometers, SPIE, Bellingham, WA (2005).Google Scholar

11 

DereniakE., Geometrical Optics, Cambridge University Press, Cambridge, UK (2008).Google Scholar

12 

DescourM., materials for OPTI 412, “Optical Instrumentation,” University of Arizona (2000).Google Scholar

13 

GoldsteinD., Polarized Light, Second Edition, Marcel Dekker, New York, NY (1993).Google Scholar

14 

GoodmanD. S., Basic optical instruments, Chapter 4, in Geometrical and Instrumental Optics, MalacaraD., ed., Academic Press, New York, NY (1988).Google Scholar

15 

GoodmanJ. Introduction to Fourier Optics, 3rd Edition, Roberts and Company Publishers, Greenwood Village, CO (2004).Google Scholar

16 

GoodwinE. P. and WyantJ. C., Field Guide to Interferometric Optical Testing, SPIE Press, Bellingham, WA (2006).Google Scholar

17 

GreivenkampJ. E., Field Guide to Geometrical Optics, SPIE Press, Bellingham, WA (2004).Google Scholar

18 

GrossH. BlechingerF., and AchtnerB., Handbook of Optical Systems, Vol. 4: Survey of Optical Instruments, Wiley-VCH, Germany (2008).Google Scholar

19 

GustafssonM. G. L., “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution.” PNAS, 102(37) 13081–13086 (2005).Google Scholar

20 

GustafssonM. G. L., “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.” Journal of Microscopy, 198(2), 82–87 (2000).Google Scholar

21 

HäuslerGerd and LindnerMichael Walter, ““Coherence Radar” and “Spectral Radar”—New tools for dermatological diagnosis.” Journal of Biomedical Optics 3(1), 21–31 (1998).Google Scholar

22 

HechtE., Optics, Fourth Edition, Addison-Wesley, Upper Saddle River, New Jersey (2002).Google Scholar

23 

HellS. W., “Far-field optical nanoscopy.” Science 316, 1153 (2007).Google Scholar

24 

HermanB., and LemastersJ., Optical Microscopy: Emerging Methods and Applications, Academic Press, New York, NY (1993).Google Scholar

25 

HobbsP., Building Electro-Optical Systems: Making It All Work, Wiley and Sons, New York, NY (2000).Google Scholar

26 

HolstG., and LomheimT., CMOS/CCD Sensors and Camera Systems, JCD Publishing, Winter Park, FL (2007).Google Scholar

27 

HuangB. WangW. BatesM., and ZhuangX., “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.” Science 319, 810 (2008).Google Scholar

28 

HuberR. WojtkowskiM., and FujimotoJ. G., “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography.” Opt. Express 14, 3225–3237 (2006).Google Scholar

30 

JozwickiR., Teoria Odwzorowania Optycznego (in Polish), PWN (1988).Google Scholar

31 

JozwickiR., Optyka Instrumentalna (in Polish), WNT (1970).Google Scholar

32 

LeitgebR. HitzenbergerC. K., and FercherA. F., “Performance of Fourier-domain versus time-domain optical coherence tomography.” Opt. Express 11, 889–894 (2003).Google Scholar

33 

MalacaraD. and ThompsonB., Eds., Handbook of Optical Engineering, Marcel Dekker, New York, NY (2001).Google Scholar

34 

MalacaraD. and MalacaraZ., Handbook of Optical Design, Marcel Dekker, New York, NY (1994).Google Scholar

35 

MalacaraD. ServinM., and MalacaraZ., Interferogram Analysis for Optical Testing, Marcel Dekker, New York, NY (1998).Google Scholar

36 

MurphyD., Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, Wilmington, DE (2001).Google Scholar

37 

MouroulisP. and MacdonaldJ., Geometrical Optics and Optical Design, Oxford University Press, New York, NY (1997).Google Scholar

38 

NeilM. A. A. JuškaitisR., and WilsonT., “Method of obtaining optical sectioning by using structured light in a conventional microscope.” Optics Letters, 22(24), 1905–1907 (1997).Google Scholar

40 

PalmerC. (Erwin Loewen, First Edition), Diffraction Grating Handbook, Newport Corp. (2005).Google Scholar

41 

PatorskiK., Handbook of the Moiré Fringe Technique, Elsevier, Oxford, UK (1993).Google Scholar

42 

PawleyJ., Ed., Biological Confocal Microscopy, Third Edition, Springer, New York, NY (2006).Google Scholar

43 

PierceM. C. JavierD. J. and Richards-KortumR., “Optical contrast agents and imaging systems for detection and diagnosis of cancer.” Int. J. Cancer 123, 1979–1990 (2008).Google Scholar

44 

PlutaM., Advanced Light Microscopy, Volume One: Principle and Basic Properties, PWN and Elsevier, New York, NY (1988).Google Scholar

45 

PlutaM., Advanced Light Microscopy Volume Two: Specialized Methods, PWN and Elsevier, New York, NY (1989).Google Scholar

46 

PlutaM., Advanced Light Microscopy, Volume Three: Measuring Techniques, PWN, Warsaw, Poland; and North Holland, Amsterdam, Holland (1993).Google Scholar

47 

PotmaE. O. EvansC. L., and XieX. S., “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging.” Optics Letters, 31(2), 241–243 (2006).Google Scholar

48 

RobinsonD. W. ReedG. T., Eds., Interferogram Analysis, IOP Publishing, Bristol, UK (1993).Google Scholar

49 

RustM. J. BatesM., and ZhuangX., “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).” Nature Methods, 3, 793–796 (2006).Google Scholar

50 

SalehB., and TeichM. C., Fundamentals of Photonics, Second Edition, Wiley, New York, NY (2007).Google Scholar

51 

SchwiegerlingJ., Field Guide to Visual and Ophthalmic Optics, SPIE Press, Bellingham, WA (2004).Google Scholar

52 

SmithW., Modern Optical Engineering, Third Edition, McGraw-Hill, New York, NY (2000).Google Scholar

53 

SpectorD., and GoldmanR., Eds., Basic Methods in Microscopy, Cold Spring Harbor Laboratory Press, Woodbury, NY (2006).Google Scholar

54 

Thorlabs website resources: http://www.thorlabs.com/Google Scholar

55 

Török,P., and KaoF. J., Eds., Optical Imaging and Microscopy, Springer, New York, NY (2007).Google Scholar

57 

WayneR., Light and Video Microscopy, Elsevier (reprinted by Academic Press), New York, NY (2009).Google Scholar

58 

YuH. ChengP. C. LiP. C. KaoF. J., Eds., Multi Modality Microscopy, World Scientific, Hackensack, NJ (2006).Google Scholar

59 

YunS. H. TearneyG. J. VakocB. J. ShishkovM. OhW. Y. DesjardinsA. E. SuterM. J. ChanR. C. EvansJ. A. JangI. K. NishiokaN. S. de BoerJ. F., and BoumaB. E., “Comprehensive volumetric optical microscopy in vivo.” Nature Med 12, 1429–1433 (2006).Google Scholar

aut.jpg Tomasz S. Tkaczyk is an Assistant Professor of Bioengineering and Electrical and Computer Engineering at Rice University, Houston, Texas, where he develops modern optical instrumentation for biological and medical applications. His primary research is in microscopy, including endo-microscopy, cost-effective high-performance optics for diagnostics, and multidimensional imaging (snapshot hyperspectral microscopy and spectro-polarimetry).

Professor Tkaczyk received his M.S. and Ph.D. from the Institute of Micromechanics and Photonics, Department of Mechatronics, Warsaw University of Technology, Poland. Beginning in 2003, after his postdoctoral training, he worked as a research professor at the College of Optical Sciences, University of Arizona. He joined Rice University in the summer of 2007.

TOPIC
12 PAGES

SHARE
Back to Top