Access to SPIE eBooks is limited to subscribing institutions. Access is not available as part of an individual subscription. However, books can be purchased on SPIE.Org
Abstract
This back matter contains the bibliography, index, and author's biography.

Bibliography

Basics of Fibers

[1] 

K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proc. Inst. Elect. Eng. 113, p. 1151 (1966).Google Scholar

[2] 

D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), p. 2252 (1971).Google Scholar

[3] 

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), p. 216 (1976).Google Scholar

[4] 

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, p. 703 (1977).Google Scholar

[5] 

L. G. Cohen and C. Lin, “Pulse delay measurements in the zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), p. 3136 (1977).Google Scholar

[6] 

K. Sano and Y. Fuji, “Polarization transmission characteristics of optical fibers with elliptical cross section,” Electron. Commun. Jpn. 63, p. 87 (1980).Google Scholar

[7] 

M. Tateda et al., “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), p. 404 (1981).Google Scholar

[8] 

S. Nagel et al., “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), p. 459 (1982).Google Scholar

[9] 

B. Costa et al., “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LED's,” Electron. Lett. 19(25), p. 1074 (1982).Google Scholar

[10] 

M. Blankenship and C. Deneka, “The outside vapor deposition method of fabricating optical waveguide fibers,” IEEE J. Quantum Electron. 18(10), p. 1418 (1982).Google Scholar

[11] 

D. Tran et al., “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol. 2(5), p. 566 (1984).Google Scholar

[12] 

J. Noda et al., “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), p. 1071 (1986).Google Scholar

[13] 

L. Cognolato, “Chemical vapour deposition for optical fibre technology,” J. Phys. IVFrance 5, C5-975 (1995).Google Scholar

[14] 

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15(4), p. 671 (1997).Google Scholar

[15] 

W. A. Gambling, “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron. 6(6), p. 1084 (2000).Google Scholar

[16] 

A. W. Snyder, “Guiding light into the millennium,” IEEE J. Sel. Top. Quantum Electron. 6(6), p. 1408 (2000).Google Scholar

[17] 

X. Wang et al., “A review of the fabrication of optic fiber,” Proc. SPIE 6034, p. 60341D (2005).Google Scholar

[18] 

A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, London (1983).Google Scholar

[19] 

J. Hecht, City of Light, The Story of Fiber Optics, Oxford University Press, New York, New York (1999).Google Scholar

[20] 

J. A. Buck, Fundamentals of Optical Fibers, John Wiley & Sons, Hoboken, New Jersey (2004).Google Scholar

Nonlinear Effects in Fibers

[21] 

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), p. 1095 (1980).Google Scholar

[22] 

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), p. 1062 (1982).Google Scholar

[23] 

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), p. 659 (1986).Google Scholar

[24] 

L. F. Mollenauer et al., “Soliton propagation in long fibers with periodically compensated loss,” IEEE J. Quantum Electron. QE-22, p. 157 (1986).Google Scholar

[25] 

G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed., Academic Press, New York, New York (2006).Google Scholar

Passive Fibers for Data Transmission

[26] 

N. Gisin et al., “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9(7), p. 821 (1991).Google Scholar

[27] 

W. A. Gambling, “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron. 6(6), p. 1084 (2000).Google Scholar

[28] 

P. Williams, “PMD measurement techniques and how to avoid the pitfalls,” J. Opt. Fiber Commun. Rep. 1, p. 84 (2004).Google Scholar

[29] 

D. A. Nolan et al., “Fibers with low polarization-mode dispersion,” J. Lightwave Technol. 22(4), p. 1066 (2004).Google Scholar

[30] 

Standards of the International Telecommunication Union (ITU), see http://www.itu.int/Google Scholar

[31] 

G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, New York, New York (2002).Google Scholar

Photonic Crystal Fibers

[32] 

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, p. 1021 (1974).Google Scholar

[33] 

J. C. Knight et al., “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), p. 1547 (1996).Google Scholar

[34] 

T. A. Birks et al., “Endlessly single-mode photonic crystal fibre,” Opt. Lett. 22(13), p. 961 (1997).Google Scholar

[35] 

J. C. Knight et al., “Large mode area photonic crystal fibre,” Electron. Lett. 34, p. 1347 (1998).Google Scholar

[36] 

D. Mogilevtsev et al., “Group-velocity dispersion in photonic crystal fibres,” Opt. Lett. 23(21), p.1662 (1998).Google Scholar

[37] 

R. F. Cregan et al., “Single-mode photonic band gap guidance of light in air,” Science 285, p. 1537 (1999).Google Scholar

[38] 

J. C. Knight et al., “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, p. 807 (2000).Google Scholar

[39] 

A. Ortigosa-Blanch et al., “Highly birefringent photonic crystal fibres,” Opt. Lett. 25(18), p. 1325 (2000).Google Scholar

[40] 

D. A. Nolan et al., “Single-polarization fiber with a high extinction ratio,” Opt. Lett. 29(16), p. 1855 (2004) .Google Scholar

[41] 

W. J. Wadsworth et al., “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, p. 843 (2004).Google Scholar

[42] 

P. J. Roberts et al., “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), p. 236 (2005) .Google Scholar

[43] 

W. S. Wong et al., “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30(21), p. 2855 (2005).Google Scholar

[44] 

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, p. 4729 (2006).Google Scholar

[45] 

A. Bjarklev, J. Broeng, and A. Sanchez Bjarklev, Photonic Crystal Fibres, Springer, New York, New York (2003).Google Scholar

Large Mode Area Fibers

[46] 

M. E. Fermann, “Single-mode excitation of multi-mode fibers with ultrashort pulses,” Opt. Lett. 23(1), p. 52 (1998).Google Scholar

[47] 

J. C. Knight et al., “Large mode area photonic crystal fibre,” Electron. Lett. 34, p. 1347 (1998).Google Scholar

[48] 

N. G. R. Broderick et al., “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, p. 185 (1999).Google Scholar

[49] 

J. P. Koplow et al., “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), p. 442 (2000).Google Scholar

[50] 

A. E. Siegman, “Propagating modes in gain-guided optical fibers,” J. Opt. Soc. Am. A 20(8), p. 1617 (2003).Google Scholar

[51] 

W. S. Wong et al., “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30(21), p. 2855 (2005).Google Scholar

[52] 

J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), p. 69 (2006).Google Scholar

[53] 

S. Ramachandran et al., “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), p. 1797 (2006).Google Scholar

[54] 

L. Dong et al., “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 pm2,” Opt. Express 14(24), p. 11512 (2006).Google Scholar

[55] 

C. Liu et al., “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD), paper ME2 (2007).Google Scholar

[56] 

O. Schmidt et al., “Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber,” Opt. Express 16(6), p. 3918 (2008).Google Scholar

[57] 

L. Fu et al., “Extremely large mode area optical fibers formed by thermal stress,” Opt. Express 17(14), p. 11782 (2009).Google Scholar

Passive Fiber-Optic Components

[58] 

K. O. Hill et al., “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett. 32, p. 647 (1978).Google Scholar

[59] 

G. Meltz et al., “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), p. 823 (1989).Google Scholar

[60] 

K. O. Hill, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), p. 1035 (1993).Google Scholar

[61] 

J. L. Archambault et al., “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29, p. 453 (1993).Google Scholar

[62] 

L. Dong et al., “Single-pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), p. 1577 (1993) .Google Scholar

[63] 

R. Kashyap, “Photosensitive optical fibers: devices and applications,” Opt. Fiber Technol. 1, p. 17 (1994) .Google Scholar

[64] 

I. Bennion et al., “Tutorial review, UV-written infiber Bragg gratings,” Opt. Quantum Electron. 28, p. 93 (1996).Google Scholar

[65] 

A. M. Vengsarkar et al., “Long-period fiber Bragg gratings as band-rejection filters,” J. Lightwave Technol. 14, p. 58 (1996).Google Scholar

[66] 

K. O. Hill and G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol. 15, 1263 (1997).Google Scholar

[67] 

A. D. Kersey et al., “Fiber grating sensors,” J. Lightwave Technol. 15(8), p. 1442 (1997).Google Scholar

[68] 

A. Dragomir et al., “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett. 28(22), p. 2171 (2003).Google Scholar

[69] 

M. Sumetsky and B. J. Eggleton, “Fiber Bragg gratings for dispersion compensation in optical communication systems,” J. Opt. Fiber Commun. Rep. 2, pp. 256-278 (2005).Google Scholar

[70] 

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser & Photon. Rev. 2(4), p. 275 (2008).Google Scholar

[71] 

E. Udd (ed.), Fiber Optic Sensors: An Introduction for Engineers and Scientists, John Wiley & Sons, New York, New York (1991).Google Scholar

[72] 

R. Kashyap, Fiber Bragg Gratings, Academic Press, San Diego, California (1999).Google Scholar

Active Fiber Devices

[73] 

E. Snitzer, “Proposed fiber cavities for optical masers,” J. Appl. Phys. 23(1), p. 36 (1961).Google Scholar

[74] 

E. Snitzer, “Optical maser action in Nd3+ in a Barium crown glass,” Phys. Rev. Lett. 7(12), p. 444 (1961).Google Scholar

[75] 

C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3(10), p. 1182 (1964).Google Scholar

[76] 

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low loss optical fibers containing rare earth ions,” Electron. Lett. 21, p. 737 (1985).Google Scholar

[77] 

S. B. Poole et al., “Fabrication and characterization of low-loss optical fibers containing rare earth ions,” J. Lightwave Technol. LT-4(7), p. 870 (1986).Google Scholar

[78] 

R. J. Mears et al., “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett. 23, p. 1026 (1987).Google Scholar

[79] 

F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett. 12(6), p. 407 (1987).Google Scholar

[80] 

E. Snitzer et al., “Double-clad, offset-core Nd fiber laser” (first report of cladding pumping), Proc. Conf. Optical Fiber Sensors, Postdeadline paper PD5 (1988).Google Scholar

[81] 

J. D. Kafka et al., “Mode-locked erbium-doped fiber laser with soliton pulse shaping,” Opt. Lett. 14(22), p. 1269 (1989).Google Scholar

[82] 

E. Desurvire, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. LT-8, p. 1730 (1990).Google Scholar

[83] 

A. C. Tropper et al., “Thulium-doped silica fiber lasers,” Proc. SPIE 1373, p. 152 (1991).Google Scholar

[84] 

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), p. 271 (1991).Google Scholar

[85] 

B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” J. Lightwave Technol. 9(2), p. 220 (1991) .Google Scholar

[86] 

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. LT-9, p. 234 (1991).Google Scholar

[87] 

R. B. Smart et al., “CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr3+-doped fluoride fibre,” Electron. Lett. 27(14), p. 1307 (1991).Google Scholar

[88] 

S. G. Grubb et al., “CW room-temperature blue upconversion fibre laser,” Electron. Lett. 28, p. 1243 (1992) .Google Scholar

[89] 

K. Tamura et al., “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), p. 1080 (1993).Google Scholar

[90] 

M. E. Fermann, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18(11), p. 894 (1993).Google Scholar

[91] 

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett. 67, p. 158 (1995).Google Scholar

[92] 

P. Xie and T. R. Gosnell, “Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions,” Opt. Lett. 20(9), p. 1014 (1995).Google Scholar

[93] 

R. Paschotta et al., “Ytterbium-doped fiber amplifiers.” IEEE J. Quantum Electron. 33(7), p. 1049 (1997).Google Scholar

[94] 

R. Paschotta et al., “Characterization and modeling of thulium:ZBLAN blue upconversion fiber lasers,” J. Opt. Soc. Am. B 14(5), p. 1213 (1997).Google Scholar

[95] 

V. Dominic et al., “110 W fibre laser,” Electron. Lett. 35, p. 1158 (1999).Google Scholar

[96] 

M. Pollnau and S. D. Jackson, “Erbium 3-pm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), p. 30 (2001).Google Scholar

[97] 

F. Ö. Ilday and F. W. Wise, “Nonlinearity management: a route to high-energy soliton fiber lasers,” J. Opt. Soc. Am. B 19(3), p. 470 (2002).Google Scholar

[98] 

F. Ö. Ilday et al., “Generation of 50-fs, 5-nJ pulses at 1.03 pm from a wave-breaking-free fiber laser,” Opt. Lett. 28(15), p. 1365 (2003).Google Scholar

[99] 

F. Ö. Ilday et al., “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 91(21), p. 213902 (2004).Google Scholar

[100] 

Y. Jeong et al., “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), p. 6088 (2004).Google Scholar

[101] 

J. R. Buckley et al., “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30(14), p. 1888 (2005).Google Scholar

[102] 

A. Polynkin et al., “Single-frequency fiber ring laser with 1 W output power at 1.5 pm,” Opt. Express 13(8), p. 3179 (2005).Google Scholar

[103] 

P. Polynkin et al., “All-fiber passively mode-locked laser oscillator at 1.5 pm with watts-level average output power and high repetition rate,” Opt. Lett. 31(5), p. 592 (2006).Google Scholar

[104] 

J. Limpert et al., “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), p. 233 (2006).Google Scholar

[105] 

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), p. 191 (2009).Google Scholar

[106] 

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications, John Wiley & Sons, New York, New York (1994).Google Scholar

[107] 

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd Ed., CRC Press, Boca Raton, Florida (2001).Google Scholar

[108] 

R. W. Berdine and R. A. Motes, Introduction to High Power Fiber Lasers, Directed Energy Professional Society (2009).Google Scholar

Additional References

 

R. Paschotta, Field Guide to Lasers, FG12 http://dx.doi.Org/10.1117/3.767474Google Scholar

 

R. Paschotta, Field Guide to Laser Pulse Generation, FG14 http://dx.doi.org/10.1117/800629Google Scholar

 

R. Paschotta, Encyclopedia of Laser Physics and Technology, covering many topics of this Field Guide. The online version is freely usable by the public at http://www.rp-photonics.com/encyclopedia.html. The print version is available via Wiley-VCH, Germany.Google Scholar

TOPIC

SHARE
Back to Top