Open Access
Ebook Topic:
Back Matter
Author Affiliations +
Abstract
This back matter contains the bibliography, index, and author's biography.

Bibliography

Basics of Fibers

[1] 

Kao K. C., Hockham G. A., “Dielectric-fiber surface waveguides for optical frequencies,” Proc. Inst. Elect. Eng., 113 1151 1966). Google Scholar

[2] 

Gloge D., “Weakly guiding fibers,” Appl. Opt., 10 (10), 2252 1971). Google Scholar

[3] 

Marcuse D., “Curvature loss formula for optical fibers,” J. Opt. Soc. Am., 66 (3), 216 1976). Google Scholar

[4] 

Marcuse D., “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J., 56 703 1977). Google Scholar

[5] 

Cohen L. G., Lin C., “Pulse delay measurements in the zero material dispersion wavelength region for optical fibers,” Appl. Opt., 16 (12), 3136 1977). Google Scholar

[6] 

Sano K., Fuji Y., “Polarization transmission characteristics of optical fibers with elliptical cross section,” Electron. Commun. Jpn., 63 87 1980). Google Scholar

[7] 

Tateda M., “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron., 17 (3), 404 1981). Google Scholar

[8] 

Nagel S., “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron, 18 (4), 459 1982). Google Scholar

[9] 

Costa B., “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LED's,” Electron. Lett., 19 (25), 1074 1982). Google Scholar

[10] 

Blankenship M., Deneka C., “The outside vapor deposition method of fabricating optical waveguide fibers,” IEEE J. Quantum Electron, 18 (10), 1418 1982). Google Scholar

[11] 

Tran D., “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol, 2 (5), 566 1984). Google Scholar

[12] 

Noda J., “Polarization-maintaining fibers and their applications,” J. Lightwave Technol., 4 (8), 1071 1986). Google Scholar

[13] 

Cognolato L., “Chemical vapour deposition for optical fibre technology,” J. Phys. IVFrance, 5 C5975 1995). Google Scholar

[14] 

Faustini L., Martini G., “Bend loss in single-mode fibers,” J. Lightwave Technol., 15 (4), 671 1997). Google Scholar

[15] 

Gambling W. A., “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron., 6 (6), 1084 2000). Google Scholar

[16] 

Snyder A. W., “Guiding light into the millennium,” IEEE J. Sel. Top. Quantum Electron., 6 (6), 1408 2000). Google Scholar

[17] 

Wang X., “A review of the fabrication of optic fiber,” Proc. SPIE, 6034 60341D 2005). Google Scholar

[18] 

Snyder A. W., Love J. D., Optical Waveguide Theory, Chapman and Hall, London (1983). Google Scholar

[19] 

Hecht J., City of Light, The Story of Fiber Optics, Oxford University Press, New York, New York (1999). Google Scholar

[20] 

Buck J. A., Fundamentals of Optical Fibers, John Wiley & Sons, Hoboken, New Jersey (2004). Google Scholar

Nonlinear Effects in Fibers

[21] 

Mollenauer L. F., Stolen R. H., Gordon J. P., “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev.Lett., 45 (13), 1095 1980). Google Scholar

[22] 

Stolen R., Bjorkholm J., “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron., 18 (7), 1062 1982). Google Scholar

[23] 

Mitschke F. M., Mollenauer L. F., “Discovery of the soliton self-frequency shift,” Opt. Lett., 11 (10), 659 1986). Google Scholar

[24] 

Mollenauer L. F., “Soliton propagation in long fibers with periodically compensated loss,” IEEE J. Quantum Electron., QE-22 157 1986). Google Scholar

[25] 

Agrawal G. P., Nonlinear Fiber Optics, 4th Ed.Academic Press, New York, New York (2006). Google Scholar

Passive Fibers for Data Transmission

[26] 

Gisin N., “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol., 9 (7), 821 1991). Google Scholar

[27] 

Gambling W. A., “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron., 6 (6), 1084 2000). Google Scholar

[28] 

Williams P., “PMD measurement techniques and how to avoid the pitfalls,” J. Opt. Fiber Commun. Rep., 1 84 2004). Google Scholar

[29] 

Nolan D. A., “Fibers with low polarization-mode dispersion,” J. Lightwave Technol., 22 (4), 1066 2004). Google Scholar

[30] 

Standards of the International Telecommunication Union (ITU), http://www.itu.int/ Google Scholar

[31] 

Agrawal G. P., Fiber-Optic Communication Systems, John Wiley & Sons, New York, New York (2002). Google Scholar

Photonic Crystal Fibers

[32] 

Kaiser P., Astle H. W., “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J., 53 1021 1974). Google Scholar

[33] 

Knight J. C., “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., 21 (19), 1547 1996). Google Scholar

[34] 

Birks T. A., “Endlessly single-mode photonic crystal fibre,” Opt. Lett., 22 (13), 961 1997). Google Scholar

[35] 

Knight J. C., “Large mode area photonic crystal fibre,” Electron. Lett., 34 1347 1998). Google Scholar

[36] 

Mogilevtsev D., “Group-velocity dispersion in photonic crystal fibres,” Opt. Lett., 23 (21), 1662 1998). Google Scholar

[37] 

Cregan R. F., “Single-mode photonic band gap guidance of light in air,” Science, 285 1537 1999). Google Scholar

[38] 

Knight J. C., “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., 12 807 2000). Google Scholar

[39] 

Ortigosa-Blanch A., “Highly birefringent photonic crystal fibres,” Opt. Lett., 25 (18), 1325 2000). Google Scholar

[40] 

Nolan D. A., “Single-polarization fiber with a high extinction ratio,” Opt. Lett., 29 (16), 1855 2004). Google Scholar

[41] 

Wadsworth W. J., “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett., 16 843 2004). Google Scholar

[42] 

Roberts P. J., “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express, 13 (1), 236 2005). Google Scholar

[43] 

Wong W. S., “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett., 30 (21), 2855 2005). Google Scholar

[44] 

Russell P. St. J., “Photonic-crystal fibers,” J. Lightwave Technol., 24 4729 2006). Google Scholar

[45] 

Bjarklev A., Broeng J., Bjarklev A. Sanchez, Photonic Crystal Fibres, Springer, New York, New York (2003). Google Scholar

Large Mode Area Fibers

[46] 

Fermann M. E., “Single-mode excitation of multi-mode fibers with ultrashort pulses,” Opt. Lett., 23 (1), 52 1998). Google Scholar

[47] 

Knight J. C., “Large mode area photonic crystal fibre,” Electron. Lett., 34 1347 1998). Google Scholar

[48] 

Broderick N. G. R., “Large mode area fibers for high power applications,” Opt. Fiber Technol., 5 185 1999). Google Scholar

[49] 

Koplow J. P., “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett., 25 (7), 442 2000). Google Scholar

[50] 

Siegman A. E., “Propagating modes in gain-guided optical fibers,” J. Opt. Soc. Am. A, 20 (8), 1617 2003). Google Scholar

[51] 

Wong W. S., “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett., 30 (21), 2855 2005). Google Scholar

[52] 

Fini J. M., “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express, 14 (1), 69 2006). Google Scholar

[53] 

Ramachandran S., “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett., 31 (12), 1797 2006). Google Scholar

[54] 

Dong L., “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 pm2,” Opt. Express, 14 (24), 11512 2006). Google Scholar

[55] 

Liu C., “Effectively single-mode chirally-coupled core fiber,” Advanced Solid-State Photonics, OSA Technical Digest Series (CD), 2007). Google Scholar

[56] 

Schmidt O., “Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber,” Opt. Express, 16 (6), 3918 2008). Google Scholar

[57] 

Fu L., “Extremely large mode area optical fibers formed by thermal stress,” Opt. Express, 17 (14), 11782 2009). Google Scholar

Passive Fiber-Optic Components

[58] 

Hill K. O., “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett., 32 647 1978). Google Scholar

[59] 

Meltz G., “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett., 14 (15), 823 1989). Google Scholar

[60] 

Hill K. O., “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett., 62 (10), 1035 1993). Google Scholar

[61] 

Archambault J. L., “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett., 29 453 1993). Google Scholar

[62] 

Dong L., “Single-pulse Bragg gratings written during fibre drawing,” Electron. Lett., 29 (17), 1577 1993). Google Scholar

[63] 

Kashyap R., “Photosensitive optical fibers: devices and applications,” Opt. Fiber Technol., 1 17 1994). Google Scholar

[64] 

Bennion I., “Tutorial review, UV-written infiber Bragg gratings,” Opt. Quantum Electron., 28 93 1996). Google Scholar

[65] 

Vengsarkar A. M., “Long-period fiber Bragg gratings as band-rejection filters,” J. Lightwave Technol., 14 58 1996). Google Scholar

[66] 

Hill K. O., Meltz G., “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol., 15 1263 1997). Google Scholar

[67] 

Kersey A. D., “Fiber grating sensors,” J. Lightwave Technol., 15 (8), 1442 1997). Google Scholar

[68] 

Dragomir A., “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett., 28 (22), 2171 2003). Google Scholar

[69] 

Sumetsky M., Eggleton B. J., “Fiber Bragg gratings for dispersion compensation in optical communication systems,” J. Opt. Fiber Commun.Rep., 2 256–278 2005). Google Scholar

[70] 

Canning J., “Fibre gratings and devices for sensors and lasers,” Laser & Photon. Rev., 2 (4), 275 2008). Google Scholar

[71] 

Udd E., Fiber Optic Sensors: An Introduction for Engineers and Scientists, John Wiley & Sons, New York, New York (1991). Google Scholar

[72] 

Kashyap R., Fiber Bragg Gratings, Academic Press, San Diego, California (1999). Google Scholar

Active Fiber Devices

[73] 

Snitzer E., “Proposed fiber cavities for optical masers,” J. Appl. Phys., 23 (1), 36 1961). Google Scholar

[74] 

Snitzer E., “Optical maser action in Nd3+ in a Barium crown glass,” Phys. Rev. Lett., 7 (12), 444 1961). Google Scholar

[75] 

Koester C. J., Snitzer E., “Amplification in a fiber laser,” Appl. Opt., 3 (10), 1182 1964). Google Scholar

[76] 

Poole S. B., Payne D. N., Fermann M. E., “Fabrication of low loss optical fibers containing rare earth ions,” Electron. Lett., 21 737 1985). Google Scholar

[77] 

Poole S. B., “Fabrication and characterization of low-loss optical fibers containing rare earth ions,” J. Lightwave Technol., LT-4 (7), 870 1986). Google Scholar

[78] 

Mears R. J., “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., 23 1026 1987). Google Scholar

[79] 

Mitschke F. M., Mollenauer L. F., “Ultrashort pulses from the soliton laser,” Opt. Lett., 12 (6), 407 1987). Google Scholar

[80] 

Snitzer E., “Double-clad, offset-core Nd fiber laser,” Proc. Conf. Optical Fiber Sensors, 1988). Google Scholar

[81] 

Kafka J. D., “Mode-locked erbium-doped fiber laser with soliton pulse shaping,” Opt. Lett., 14 (22), 1269 1989). Google Scholar

[82] 

Desurvire E., “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol., LT-8 1730 1990). Google Scholar

[83] 

Tropper A. C., “Thulium-doped silica fiber lasers,” Proc. SPIE, 1373 152 1991). Google Scholar

[84] 

Giles C. R., Desurvire E., “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol., 9 (2), 271 1991). Google Scholar

[85] 

Ainslie B. J., “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” J. Lightwave Technol., 9 (2), 220 1991). Google Scholar

[86] 

Miniscalco W. J., “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol., LT-9 234 1991). Google Scholar

[87] 

Smart R. B., “CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr3+-doped fluoride fibre,” Electron. Lett., 27 (14), 1307 1991). Google Scholar

[88] 

Grubb S. G., “CW room-temperature blue upconversion fibre laser,” Electron. Lett., 28 1243 1992). Google Scholar

[89] 

Tamura K., “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett., 18 (13), 1080 1993). Google Scholar

[90] 

Fermann M. E., “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett., 18 (11), 894 1993). Google Scholar

[91] 

Tamura K., Ippen E. P., Haus H. A., “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett., 67 158 1995). Google Scholar

[92] 

Xie P., Gosnell T. R., “Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions,” Opt. Lett., 20 (9), 1014 1995). Google Scholar

[93] 

Paschotta R., “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron., 33 (7), 1049 1997). Google Scholar

[94] 

Paschotta R., “Characterization and modeling of thulium:ZBLAN blue upconversion fiber lasers,” J. Opt. Soc. Am. B, 14 (5), 1213 1997). Google Scholar

[95] 

Dominic V., “110 W fibre laser,” Electron. Lett. 35, 1158 1999). Google Scholar

[96] 

Pollnau M., Jackson S. D., “Erbium 3-pm fiber lasers,” IEEE J. Sel. Top. Quantum Electron., 7 (1), 30 2001). Google Scholar

[97] 

Ilday F. Ö., Wise F. W., “Nonlinearity management: a route to high-energy soliton fiber lasers,” J. Opt. Soc. Am. B, 19 (3), 470 2002). Google Scholar

[98] 

Ilday F. Ö., “Generation of 50-fs, 5-nJ pulses at 1.03 pm from a wave-breaking-free fiber laser,” Opt. Lett., 28 (15), 1365 2003). Google Scholar

[99] 

Ilday F. Ö., “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett., 91 (21), 213902 2004). Google Scholar

[100] 

Jeong Y., “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express, 12 (25), 6088 2004). Google Scholar

[101] 

Buckley J. R., “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett., 30 (14), 1888 2005). Google Scholar

[102] 

Polynkin A., “Single-frequency fiber ring laser with 1 W output power at 1.5 pm,” Opt. Express, 13 (8), 3179 2005). Google Scholar

[103] 

Polynkin P., “All-fiber passively mode-locked laser oscillator at 1.5 pm with watts-level average output power and high repetition rate,” Opt. Lett., 31 (5), 592 2006). Google Scholar

[104] 

Limpert J., “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron., 12 (2), 233 2006). Google Scholar

[105] 

Fermann M. E., Hartl I., “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron., 15 (1), 191 2009). Google Scholar

[106] 

Desurvire E., Erbium-Doped Fiber Amplifiers: Principles and Applications, John Wiley & Sons, New York, New York (1994). Google Scholar

[107] 

Digonnet M. J. F., Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd Ed.CRC Press, Boca Raton, Florida (2001). Google Scholar

[108] 

Berdine R. W., Motes R. A., Introduction to High Power Fiber Lasers, Directed Energy Professional Society(2009). Google Scholar

Additional References

 

Paschotta R., “Encyclopedia of Laser Physics and Technology,” http://www.rp-photonics.com/encyclopedia.html. Google Scholar
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical fibers

Fiber lasers

Photonic crystal fibers

Fluorine

Dispersion

Fiber amplifiers

Solitons

Back to Top