Abstract
This back matter contains the bibliography, index, and author's biography.

Bibliography

Basics of Fibers

[1] 

K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proc. Inst. Elect. Eng. 113, p. 1151 (1966).Google Scholar

[2] 

D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), p. 2252 (1971).Google Scholar

[3] 

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), p. 216 (1976).Google Scholar

[4] 

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, p. 703 (1977).Google Scholar

[5] 

L. G. Cohen and C. Lin, “Pulse delay measurements in the zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), p. 3136 (1977).Google Scholar

[6] 

K. Sano and Y. Fuji, “Polarization transmission characteristics of optical fibers with elliptical cross section,” Electron. Commun. Jpn. 63, p. 87 (1980).Google Scholar

[7] 

M. Tateda et al., “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), p. 404 (1981).Google Scholar

[8] 

S. Nagel et al., “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), p. 459 (1982).Google Scholar

[9] 

B. Costa et al., “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LED's,” Electron. Lett. 19(25), p. 1074 (1982).Google Scholar

[10] 

M. Blankenship and C. Deneka, “The outside vapor deposition method of fabricating optical waveguide fibers,” IEEE J. Quantum Electron. 18(10), p. 1418 (1982).Google Scholar

[11] 

D. Tran et al., “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol. 2(5), p. 566 (1984).Google Scholar

[12] 

J. Noda et al., “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), p. 1071 (1986).Google Scholar

[13] 

L. Cognolato, “Chemical vapour deposition for optical fibre technology,” J. Phys. IVFrance 5, C5-975 (1995).Google Scholar

[14] 

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15(4), p. 671 (1997).Google Scholar

[15] 

W. A. Gambling, “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron. 6(6), p. 1084 (2000).Google Scholar

[16] 

A. W. Snyder, “Guiding light into the millennium,” IEEE J. Sel. Top. Quantum Electron. 6(6), p. 1408 (2000).Google Scholar

[17] 

X. Wang et al., “A review of the fabrication of optic fiber,” Proc. SPIE 6034, p. 60341D (2005).Google Scholar

[18] 

A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, London (1983).Google Scholar

[19] 

J. Hecht, City of Light, The Story of Fiber Optics, Oxford University Press, New York, New York (1999).Google Scholar

[20] 

J. A. Buck, Fundamentals of Optical Fibers, John Wiley & Sons, Hoboken, New Jersey (2004).Google Scholar

Nonlinear Effects in Fibers

[21] 

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), p. 1095 (1980).Google Scholar

[22] 

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), p. 1062 (1982).Google Scholar

[23] 

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), p. 659 (1986).Google Scholar

[24] 

L. F. Mollenauer et al., “Soliton propagation in long fibers with periodically compensated loss,” IEEE J. Quantum Electron. QE-22, p. 157 (1986).Google Scholar

[25] 

G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed., Academic Press, New York, New York (2006).Google Scholar

Passive Fibers for Data Transmission

[26] 

N. Gisin et al., “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9(7), p. 821 (1991).Google Scholar

[27] 

W. A. Gambling, “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron. 6(6), p. 1084 (2000).Google Scholar

[28] 

P. Williams, “PMD measurement techniques and how to avoid the pitfalls,” J. Opt. Fiber Commun. Rep. 1, p. 84 (2004).Google Scholar

[29] 

D. A. Nolan et al., “Fibers with low polarization-mode dispersion,” J. Lightwave Technol. 22(4), p. 1066 (2004).Google Scholar

[30] 

Standards of the International Telecommunication Union (ITU), see http://www.itu.int/Google Scholar

[31] 

G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, New York, New York (2002).Google Scholar

Photonic Crystal Fibers

[32] 

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, p. 1021 (1974).Google Scholar

[33] 

J. C. Knight et al., “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), p. 1547 (1996).Google Scholar

[34] 

T. A. Birks et al., “Endlessly single-mode photonic crystal fibre,” Opt. Lett. 22(13), p. 961 (1997).Google Scholar

[35] 

J. C. Knight et al., “Large mode area photonic crystal fibre,” Electron. Lett. 34, p. 1347 (1998).Google Scholar

[36] 

D. Mogilevtsev et al., “Group-velocity dispersion in photonic crystal fibres,” Opt. Lett. 23(21), p.1662 (1998).Google Scholar

[37] 

R. F. Cregan et al., “Single-mode photonic band gap guidance of light in air,” Science 285, p. 1537 (1999).Google Scholar

[38] 

J. C. Knight et al., “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, p. 807 (2000).Google Scholar

[39] 

A. Ortigosa-Blanch et al., “Highly birefringent photonic crystal fibres,” Opt. Lett. 25(18), p. 1325 (2000).Google Scholar

[40] 

D. A. Nolan et al., “Single-polarization fiber with a high extinction ratio,” Opt. Lett. 29(16), p. 1855 (2004) .Google Scholar

[41] 

W. J. Wadsworth et al., “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, p. 843 (2004).Google Scholar

[42] 

P. J. Roberts et al., “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), p. 236 (2005) .Google Scholar

[43] 

W. S. Wong et al., “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30(21), p. 2855 (2005).Google Scholar

[44] 

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, p. 4729 (2006).Google Scholar

[45] 

A. Bjarklev, J. Broeng, and A. Sanchez Bjarklev, Photonic Crystal Fibres, Springer, New York, New York (2003).Google Scholar

Large Mode Area Fibers

[46] 

M. E. Fermann, “Single-mode excitation of multi-mode fibers with ultrashort pulses,” Opt. Lett. 23(1), p. 52 (1998).Google Scholar

[47] 

J. C. Knight et al., “Large mode area photonic crystal fibre,” Electron. Lett. 34, p. 1347 (1998).Google Scholar

[48] 

N. G. R. Broderick et al., “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, p. 185 (1999).Google Scholar

[49] 

J. P. Koplow et al., “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), p. 442 (2000).Google Scholar

[50] 

A. E. Siegman, “Propagating modes in gain-guided optical fibers,” J. Opt. Soc. Am. A 20(8), p. 1617 (2003).Google Scholar

[51] 

W. S. Wong et al., “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30(21), p. 2855 (2005).Google Scholar

[52] 

J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), p. 69 (2006).Google Scholar

[53] 

S. Ramachandran et al., “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), p. 1797 (2006).Google Scholar

[54] 

L. Dong et al., “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 pm2,” Opt. Express 14(24), p. 11512 (2006).Google Scholar

[55] 

C. Liu et al., “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD), paper ME2 (2007).Google Scholar

[56] 

O. Schmidt et al., “Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber,” Opt. Express 16(6), p. 3918 (2008).Google Scholar

[57] 

L. Fu et al., “Extremely large mode area optical fibers formed by thermal stress,” Opt. Express 17(14), p. 11782 (2009).Google Scholar

Passive Fiber-Optic Components

[58] 

K. O. Hill et al., “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett. 32, p. 647 (1978).Google Scholar

[59] 

G. Meltz et al., “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), p. 823 (1989).Google Scholar

[60] 

K. O. Hill, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), p. 1035 (1993).Google Scholar

[61] 

J. L. Archambault et al., “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29, p. 453 (1993).Google Scholar

[62] 

L. Dong et al., “Single-pulse Bragg gratings written during fibre drawing,” Electron. Lett. 29(17), p. 1577 (1993) .Google Scholar

[63] 

R. Kashyap, “Photosensitive optical fibers: devices and applications,” Opt. Fiber Technol. 1, p. 17 (1994) .Google Scholar

[64] 

I. Bennion et al., “Tutorial review, UV-written infiber Bragg gratings,” Opt. Quantum Electron. 28, p. 93 (1996).Google Scholar

[65] 

A. M. Vengsarkar et al., “Long-period fiber Bragg gratings as band-rejection filters,” J. Lightwave Technol. 14, p. 58 (1996).Google Scholar

[66] 

K. O. Hill and G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol. 15, 1263 (1997).Google Scholar

[67] 

A. D. Kersey et al., “Fiber grating sensors,” J. Lightwave Technol. 15(8), p. 1442 (1997).Google Scholar

[68] 

A. Dragomir et al., “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett. 28(22), p. 2171 (2003).Google Scholar

[69] 

M. Sumetsky and B. J. Eggleton, “Fiber Bragg gratings for dispersion compensation in optical communication systems,” J. Opt. Fiber Commun. Rep. 2, pp. 256-278 (2005).Google Scholar

[70] 

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser & Photon. Rev. 2(4), p. 275 (2008).Google Scholar

[71] 

E. Udd (ed.), Fiber Optic Sensors: An Introduction for Engineers and Scientists, John Wiley & Sons, New York, New York (1991).Google Scholar

[72] 

R. Kashyap, Fiber Bragg Gratings, Academic Press, San Diego, California (1999).Google Scholar

Active Fiber Devices

[73] 

E. Snitzer, “Proposed fiber cavities for optical masers,” J. Appl. Phys. 23(1), p. 36 (1961).Google Scholar

[74] 

E. Snitzer, “Optical maser action in Nd3+ in a Barium crown glass,” Phys. Rev. Lett. 7(12), p. 444 (1961).Google Scholar

[75] 

C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3(10), p. 1182 (1964).Google Scholar

[76] 

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low loss optical fibers containing rare earth ions,” Electron. Lett. 21, p. 737 (1985).Google Scholar

[77] 

S. B. Poole et al., “Fabrication and characterization of low-loss optical fibers containing rare earth ions,” J. Lightwave Technol. LT-4(7), p. 870 (1986).Google Scholar

[78] 

R. J. Mears et al., “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett. 23, p. 1026 (1987).Google Scholar

[79] 

F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett. 12(6), p. 407 (1987).Google Scholar

[80] 

E. Snitzer et al., “Double-clad, offset-core Nd fiber laser” (first report of cladding pumping), Proc. Conf. Optical Fiber Sensors, Postdeadline paper PD5 (1988).Google Scholar

[81] 

J. D. Kafka et al., “Mode-locked erbium-doped fiber laser with soliton pulse shaping,” Opt. Lett. 14(22), p. 1269 (1989).Google Scholar

[82] 

E. Desurvire, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. LT-8, p. 1730 (1990).Google Scholar

[83] 

A. C. Tropper et al., “Thulium-doped silica fiber lasers,” Proc. SPIE 1373, p. 152 (1991).Google Scholar

[84] 

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9(2), p. 271 (1991).Google Scholar

[85] 

B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” J. Lightwave Technol. 9(2), p. 220 (1991) .Google Scholar

[86] 

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. LT-9, p. 234 (1991).Google Scholar

[87] 

R. B. Smart et al., “CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr3+-doped fluoride fibre,” Electron. Lett. 27(14), p. 1307 (1991).Google Scholar

[88] 

S. G. Grubb et al., “CW room-temperature blue upconversion fibre laser,” Electron. Lett. 28, p. 1243 (1992) .Google Scholar

[89] 

K. Tamura et al., “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), p. 1080 (1993).Google Scholar

[90] 

M. E. Fermann, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18(11), p. 894 (1993).Google Scholar

[91] 

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett. 67, p. 158 (1995).Google Scholar

[92] 

P. Xie and T. R. Gosnell, “Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions,” Opt. Lett. 20(9), p. 1014 (1995).Google Scholar

[93] 

R. Paschotta et al., “Ytterbium-doped fiber amplifiers.” IEEE J. Quantum Electron. 33(7), p. 1049 (1997).Google Scholar

[94] 

R. Paschotta et al., “Characterization and modeling of thulium:ZBLAN blue upconversion fiber lasers,” J. Opt. Soc. Am. B 14(5), p. 1213 (1997).Google Scholar

[95] 

V. Dominic et al., “110 W fibre laser,” Electron. Lett. 35, p. 1158 (1999).Google Scholar

[96] 

M. Pollnau and S. D. Jackson, “Erbium 3-pm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), p. 30 (2001).Google Scholar

[97] 

F. Ö. Ilday and F. W. Wise, “Nonlinearity management: a route to high-energy soliton fiber lasers,” J. Opt. Soc. Am. B 19(3), p. 470 (2002).Google Scholar

[98] 

F. Ö. Ilday et al., “Generation of 50-fs, 5-nJ pulses at 1.03 pm from a wave-breaking-free fiber laser,” Opt. Lett. 28(15), p. 1365 (2003).Google Scholar

[99] 

F. Ö. Ilday et al., “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 91(21), p. 213902 (2004).Google Scholar

[100] 

Y. Jeong et al., “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), p. 6088 (2004).Google Scholar

[101] 

J. R. Buckley et al., “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30(14), p. 1888 (2005).Google Scholar

[102] 

A. Polynkin et al., “Single-frequency fiber ring laser with 1 W output power at 1.5 pm,” Opt. Express 13(8), p. 3179 (2005).Google Scholar

[103] 

P. Polynkin et al., “All-fiber passively mode-locked laser oscillator at 1.5 pm with watts-level average output power and high repetition rate,” Opt. Lett. 31(5), p. 592 (2006).Google Scholar

[104] 

J. Limpert et al., “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), p. 233 (2006).Google Scholar

[105] 

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), p. 191 (2009).Google Scholar

[106] 

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications, John Wiley & Sons, New York, New York (1994).Google Scholar

[107] 

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd Ed., CRC Press, Boca Raton, Florida (2001).Google Scholar

[108] 

R. W. Berdine and R. A. Motes, Introduction to High Power Fiber Lasers, Directed Energy Professional Society (2009).Google Scholar

Additional References

 

R. Paschotta, Field Guide to Lasers, FG12 http://dx.doi.Org/10.1117/3.767474Google Scholar

 

R. Paschotta, Field Guide to Laser Pulse Generation, FG14 http://dx.doi.org/10.1117/800629Google Scholar

 

R. Paschotta, Encyclopedia of Laser Physics and Technology, covering many topics of this Field Guide. The online version is freely usable by the public at http://www.rp-photonics.com/encyclopedia.html. The print version is available via Wiley-VCH, Germany.Google Scholar

TOPIC

SHARE
Back to Top