Access to eBooks is limited to institutions that have purchased or currently subscribe to the SPIE eBooks program. eBooks are not available via an individual subscription. SPIE books (print and digital) may be purchased individually on SPIE.Org.

Contact your librarian to recommend SPIE eBooks for your organization.
Ebook Topic:
Back Matter
Abstract
This back matter contains the bibliography and index.

Equation Summary

General equations

Malus’ Law and Brewster’s Law:

I(θ)=I0cos2θtani=n2/n1=n

Field components propagating in the z direction:

Ex(z,t)=E0xcos(ωtkz+δx)Ey(z,t)=E0ycos(ωtkz+δy)

Equation of the polarization ellipse:

Ex(z,t)2E0x2+Ey(z,t)2E0y22Ex(z,t)Ey(z,t)E0xE0ycosδ=sin2δ

Parameters of the polarization ellipse:

tan2ψ=2E0xE0yE0x2E0y2cosδ0ψπsin2χ=2E0xE0ysinδE0x2+E0y2π/4<χπ/4

Auxilliary angle definition and polarization parameters:

tanα=E0yE0x, 0απ/2tan2ψ=(tan2α)cosδsin2χ=(sin2α)sinδ0δ<2π

Stokes polarization parameters:

S0=E0x2+E0y2S1=E0x2E0y2S2=2E0xE0ycosδS3=2E0xE0ysinδ, δ=δyδxS02=S12+S22+S32

Stokes vector:

S=(S0S1S2S3)=(E0x2+E0y2E0x2E0y22E0xE0ycosδ2E0xE0ysinδ)

Stokes parameters in complex notation:

Ex(t)=E0xexp(iδx), Ey(t)=E0yexp(iδy)S0=ExEx*+EyEy*S1=ExEx*EyEy*S2=ExEy*+EyEx*S3=i(ExEy*+EyEx*)

Stokes vector on the Poincaré sphere:

S=(S0S1S2S3)=[1cos(2χ)cos(2ψ)cos(2χ)sin(2ψ)sin(2χ)]ψ=12tan1(S2S1)0ψπ, χ=12sin1(S3S0)π4χπ4

Stokes vector on the observable polarization sphere:

S=(S0S1S2S3)=(1cos2αsin2αcosδsin2αsinδ)

Angle relation of 2a and δ to the Stokes parameters:

2α=cos1(S1S0)02α<πδ=tan1(S3S2)0δ<2π

Ellipticity and orientation angles relations:

tan(2ψ)=tan(2α)cosδsin(2χ)=sin(2α)sinδcos(2α)=cos(2χ)cos(2ψ)cotδ=cot(2χ)sin(2ψ)

Stokes vectors for unpolarized and partially polarized light:

SUNP=S0(1000)S=(S0S1S2S3)=(1P)(S0000)+P(S0S1S2S3)0P1

Definition of the degree of polarization P:

P=IpolItot=S12+S22+S32S00P1S02S12+S22+S32

Mueller matrices

Mathematical form of the Mueller matrix:

M=(m00m01m02m03m10m11m12m13m20m21m22m23m30m31m32m33)

Mueller matrix for a polarizer:

MPOL(px,py)=12(px2+py2px2py200px2py2px2+py200002pxpy00002pxpy)0px10py1

Mueller matrices for a linear horizontal and vertical polarizer:

MPOL=12(1100110000000000)MPOL=12(1100110000000000)

Mueller matrix for a linear polarizer with its transmission axis at +45°:

MPOL=12(1010000010100000)

Mueller matrix for a wave plate:

MWP(ϕ)=(1000010000cosϕsinϕ00sinϕcosϕ)ϕ=2πλ(none)d

Mueller matrices for a quarter- and half-wave plate:

MQWP=(1000010000010010)MHWP=(1000010000100001)

Mueller matrix for a rotator:

MROT(θ)=(10000cos2θsin2θ00sin2θcos2θ00001)

Mueller matrix for a rotated polarizing element:

M(θ)=MROT(2θ)MMROT(2θ)

Mueller matrix for a rotated linear polarizer:

MPOL(θ)=12(1cos2θsin2θ0cos2θcos22θsin2θcos2θ0sin2θsin2θcos2θsin22θ00000)

Mueller matrix of a circular polarizer:

MCP=(1010000000001010)

Reflection and transmission

Fresnel’s Equations for reflection and refraction:

Rp=tan(ir)tan(i+r)EpRs=sin(ir)sin(i+r)EsTp=2sinrcosisin(i+r)cos(ir)EpTS=2sinrcosisin(i+r)ES

Stokes parameters for reflection:

S0R=fR[(cos2α+cos2α+)S0+(cos2αcos2α+)S1]S1R=fR[(cos2αcos2α+)S0+(cos2α+cos2α+)S1]S2R=fR(2cosαcosα+)S2S3R=fR(2cosαcosα+)S3fR=12(tanαtanα+)2

Stokes parameters for transmission (refraction):

S0T=fT[(cos2α+1)S0+(cos2α1)S1]S1T=fT[(cos2α1)S0+(cos2α+1)S1]S2T=fT(2cosα)S2S3T=fT(2cosα)S3fT=12sin2isin2r(sinα+cosα)2

Mueller matrices for reflection and transmission:

MR=(n1n+1)2(1000010000100001)MT=4n(n+1)2(1000010000100001)

Mueller matrices for Brewster angle reflection and transmission:

MR,B=12cos22iB(1100110000000000)MT,B=12(sin22iB+1sin22iB100sin22iB1sin22iB+100002sin2iB00002sin2iB)

Mueller matrix for total internal reflection:

MR=(1000010000cosδsinδ00sinδcosδ)tanδ2=cosin2sin2i1nsin2i

Mueller matrix of the Fresnel rhomb:

M=(1000010000cos(δU+δL)sin(δU+δL)00sin(δU+δL)cos(δU+δL))

Jones matrix calculus

Jones vector:

E=(ExEy)=(E0xeiδxE0yeiδy)

Jones matrix formulation of optical intensity:

I=EEI=(Ex*Ey*)(ExEy)=ExEx*+EyEy*

Jones matrix definition:

J=(jxxjxyjyxjyy)

Jones matrices for linear polarizers:

JPOL=(px00py)0px,py1JLHP=(1000)JLVP=(0001)

Jones matrices for a wave plate, quarter-wave plate, and a half-wave plate:

JWP=(ei(ϕ/2)00ei(ϕ/2))(100eiϕ)JQWP=(100i)JHWP=(1001)

Jones matrix for a rotator:

JROT(θ)=(cosθsinθsinθcosθ)

Jones matrix for a rotated polarizing element:

J(θ)=JROT(θ)JJROT(θ)

Polarizer characterization

Transmittance of a single linear polarizer:

TUNP=k1+k22TLHP=k12TLVP=k22

Transmittance of a pair of linear polarizers:

TUNP=H0=12(k12+k22)TLHP=k122TLVP=k222

Transmittance of a pair of crossed polarizers:

TUNP=H90=k1k2

Transmittance for a single rotated polarizer at an angle θ:

T(θ)=k1sin2θ+k2cos2θ

Transmittance for a fixed and rotated polarizer at an angle θ:

T(θ)=k1k2sin2θ+12(k12+k22)cos2θ=H90+(H0H90)cos2θ

Logarithmic definition of transmittance (density):

D0=log10H0D90=log10H90

Contrast ratio of a polarizer:

C=TmaxTminTmax+Tmin=k1k2k1+k2

Kerr and Pockel cell characterization

Birefringence of the Kerr effect:

npns=λBε2

Pockel cell phase shift:

ϕ=ϕyϕx=ωn03r63cV

Stokes vectors for radiating charges

Stokes vector for a linearly oscillating charge:

S=(ez0c2R)2sin2θω04(1100)

Stokes vector for a randomly oriented oscillating charge:

S=8π3(eAc2R)2ω04(1000)

Stokes vector for a charge moving in a circle:

S=(eAc2R)2ω04(1+cos2θsin2θ02cosθ)

Stokes vector for the Zeeman effect:

S=23(eA2c2R)2[ω4(1+cos2θsin2θ02cosθ)+2ω04(sin2θsin2θ00)+ω+4(1+cos2θsin2θ02cosθ)]

Mueller matrix for Thomson scattering:

M=12(e2mc2R)2(1+cos2θsin2θ00sin2θ1+cos2θ00002cosθ00002cosθ)

Stokes vector for Rayleigh scattering:

S=12[e2mc2(ω2ω02)]2ω4(S0(1+cos2θ)S1sin2θS0sin2θ+S1(1+cos2θ)2S2cosθ2S3cosθ)

Absorbing media—semiconductors and metals

Complex dielectric constant and refractive index for metals:

ε=εi(4πσω)n=n(1iκ)

Reflectivity at normal incidence for absorbing media:

Rs=Rp=[(n1)2+(nκ)2(n+1)2+(nκ)2]

s- and p- reflectivity at non-normal incidence:

Rs=|RsEs|2=[(ncosi)2+(nκ)2(n+cosi)2+(nκ)2]Rp=|RpEp|2=[(n1/cosi)2+(nκ)2(n+1/cosi)2+(nκ)2]
TOPIC

SHARE
Back to Top