Access to eBooks is limited to institutions that have purchased or currently subscribe to the SPIE eBooks program. eBooks are not available via an individual subscription. SPIE books (print and digital) may be purchased individually on SPIE.Org.

Contact your librarian to recommend SPIE eBooks for your organization.
Abstract
This back matter contains the bibliography, index, and author's biography.

Bibliography

1 

Alpern, M., G. L. Mason, R. E. Jardinico, “Pupil size changes associated with changes in accommodative vergence,” Am J Ophthalmol 52: 762-767 (1961).Google Scholar

2 

Alvarez, L. W., “Two-element variable-power spherical element,” US Patent 3,305,294.Google Scholar

3 

Ames, A., C. A. Proctor, “Dioptrics of the eye,” J Opt Soc Am 5: 22-84 (1921).Google Scholar

4 

Applegate, R. A., V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: normal variations of peak location and directionality,” J Opt Soc Am A 10: 1611-1623 (1993).Google Scholar

5 

Arend, O., R. Remky, D. Evans, R. Stuber, A. Harris, “Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes,” Invest Ophthalmol Vis Sci. 38: 1819-1824 (1997).Google Scholar

6 

Atchison, D. A., G. Smith, Optics of the Human Eye. (Butterworth-Heinemann, Oxford, 2000).Google Scholar

7 

Barten, P. G. J., Contrast Sensitivity of the Human Eye and Its Effects on Image Quality (SPIE Press, Bellingham, WA, 1999).Google Scholar

8 

Boettner, E. A., J. R. Wolter, “Transmission of the ocular media,” Invest Ophthalmol Vis Sci 1:776-783 (1962).Google Scholar

9 

Chernyak, D. A., “Cyclotorsional eye motion occurring between wavefront measurement and refractive surgery,” J Cataract Ref Surg 30: 633-638 (2004).Google Scholar

10 

Duane, A., “Normal values of the accommodation at all ages,” Trans Sec Ophthalmol AMA 53: 383-391 (1912).Google Scholar

11 

Fannin, T. E., T. Grosvenor, Clinical Optics (Butterworth-Heinemann, Oxford, 1997).Google Scholar

12 

Hecht, S., C. Haig, A. M. Chase, “The influence of light adaptation on subsequent dark adaptation of the eye,” J Gen Physiol 20: 831-850 (1937).Google Scholar

13 

Holladay, J. T., “International Lens & Implant Registry 2004,” J Cataract Refract Surg 30: 207-229 (2004).Google Scholar

14 

Howland, H. C., B. Howland, “A subjective method for measurements of monochromatic aberrations of the eye,” J Opt Soc Am 67: 1508-1518 (1977).Google Scholar

15 

Humphrey, W. E., “Variable anamorphic lens and method for constructing lens,” US Patent 3,751,138.Google Scholar

16 

International Commission on Non-Ionizing Radiation Protection, “Guidelines of limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm),” Health Phys 73: 539-554 (1997).Google Scholar

17 

Ivanoff, A., “About the spherical aberration of the eye,” J Opt Soc Am 46: 901-903 (1956).Google Scholar

18 

Judd, D. B., Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight. In: Proceedings of the Twelfth Session of the CIE, Stockholm. Paris: Bureau Central de la CIE (1951).Google Scholar

19 

Klein, S. A., R. B. Mandell, “Axial and instantaneous power conversion in corneal topography,” Invest Ophthalmol Vis Sci 36: 2155-2159 (1995).Google Scholar

20 

Kooijman, A. C., “Light distribution on the retina of a wide-angle theoretical eye,” J Opt Soc Am 73: 1544-1550 (1983).Google Scholar

21 

Koretz, J. F., C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye: changes in the anterior segment and crystalline lens with focus,” Invest Ophthalmol Vis Sci 38: 569-578 (1997).Google Scholar

22 

Koretz, J. F., C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in shape upon accommodation and with accommodative loss,” J Opt Soc Am A 19: 144-151 (2002).Google Scholar

23 

Koretz, J. F., S. A. Strenk, L. M. Strenk, J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study, J Opt Soc Am A 21: 346-354 (2004).Google Scholar

24 

Le Grand, Y., S. G. El Hage, Physiological Optics (Springer-Verlag: Berlin, 1980).Google Scholar

25 

Liang, J., B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wavefront sensor,” J Opt Soc Am A 11: 1949-1957 (1994).Google Scholar

26 

Lotmar, W., T. Lotmar, “Peripheral astigmatism in the human eye: experimental data and theoretical model prediction,” J Opt Soc Am 64: 510-513 (1974).Google Scholar

27 

Malacara, D, Color Vision and Colorimetry: Theory and Applications (SPIE Press: Bellingham, 2002).Google Scholar

28 

Mandell, R. B., “Location of the corneal sighting center in videokeratography,” J Refract Corneal Surg 11: 253-258 (1995).Google Scholar

29 

McLeod, S., S. M. Pitts, “Reflection of light by small areas of the ocular fundus,” Invest Ophthalmol Vis Sci 16: 981-985 (1977).Google Scholar

30 

Miller, D., Optics and Refraction: A User-Friendly Guide (Gower: New York, 1991).Google Scholar

31 

Molebny, V. V., I. G Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, V. M. Sokurenko, “Retinal ray-tracing technique for eye refraction mapping,” Proc SPIE 2971: 175-183 (1997).Google Scholar

32 

Moon, P., D. E. Spencer, “On the Stiles-Crawford effect,” J Opt Soc Am 34: 319-329 (1944).Google Scholar

33 

Porter, J., A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J Opt Soc Am A 18: 1793-1803 (2001).Google Scholar

34 

Poynton, C., Digital Video and HDTV. Algorithms and Interfaces (Morgan Kaufmann: Amsterdam, 2003).Google Scholar

35 

Rabbetts, R. B., A. G. Bennett, Clinical Visual Optics (Butterworth-Heinemann: Oxford, 1990).Google Scholar

36 

Rempt, F., J. Hoogerheide, W. P. H. Hoogenboom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162: 1-10 (1971).Google Scholar

37 

Roufs, J. A., “Dynamic properties of vision. I. experimental relationships between flicker and flash thresholds,” Vis Res 12: 261-278 (1972).Google Scholar

38 

Sivak, J. G., T. Mandelman, “Chromatic dispersion of the ocular media,” Vis Res 22: 997-1003 (1982).Google Scholar

39 

Smirnov, M. S., “Measurement of the wave aberration of the human eye,” Biofizika 6: 687-703 (1961).Google Scholar

40 

Stiles, W. S., J. M. Burch, “NPL colour-matching investigation: Final report,” Optica Acta 6: 1-26 (1959).Google Scholar

41 

Stockman, A., L. T. Sharpe, “Cone spectral sensitivities and color matching,” In: Color Vision: From Genes to Perception. Eds: K. R. Gegenfurtner, L. T. Sharpe (Cambridge University Press: Cambridge, 2001).Google Scholar

42 

Stockman, A., L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vision Research 40: 1711-1737 (2000).Google Scholar

43 

Thibos, L. N., R. A. Applegate, J. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J Refract Surg 18: S652-S660 (2002).Google Scholar

44 

Thibos, L. N., W. Wheeler, D. Horner, “Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,” Optom Vis Sci 74: 367-375 (1997).Google Scholar

45 

Thibos, L. N., M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl Opt 31: 3594-3600 (1992).Google Scholar

46 

Tscherning, M., “Die monochromatischen Aberrationen des menschlichen Auges,” Z Psychol Physiol Sinne 6: 456-471 (1894).Google Scholar

47 

van Nes, F. L., M. A. Bouman, “Spatial modulation transfer in the human eye,” J Opt Soc Am 57: 401-406 (1967).Google Scholar

48 

Von Noorden, G. K., Binocular Vision and Ocular Motility: Theory and Management of Strabismus, 4th ed. (Mosby: St. Louis, 1990).Google Scholar

49 

Vos, J. J., “Colorimetric and photometric properties of a 2-deg fundamental observer,” Color Research and Application 3: 125-128 (1978).Google Scholar

50 

Walsh, G., W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J Opt Soc Am A 1: 987-992 (1984).Google Scholar

51 

Webb, R. H., C. M. Penney, K. P. Thompson, “Measurement of ocular wavefront distortion with a spatially resolved refractometer,” Appl Opt 31:3678-3686 (1992).Google Scholar

52 

Winn, B., D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest Ophthalmol Vis Sci 35: 1132-1137 (1994).Google Scholar

53 

Wyszecki, G., W. S. Stiles, Color Science (Wiley: New York: 1982).Google Scholar

54 

Z136.1 ANSI Standard, “For the Safe Use of Lasers.”Google Scholar

Websites

55 

http://cvrl.ioo.ucl.ac.uk/basicindex.htm The homepage for Colour & Vision Research Laboratories, Institute of Ophthalmology, University College London.Google Scholar

56 

http://www.optics.arizona.edu/Palmer/rpfaq/rpfaq.htm The homepage for Radiometry and Photometry FAQ.Google Scholar

57 

http://www.brucelinbloom.com The homepage for Color Science calculationsGoogle Scholar

page110-1.jpg Jim Schwiegerling is an Associate Professor of Ophthalmology and Optical Sciences at the University of Arizona. For the past five years, he has taught a course in visual optics, introducing engineers to the functioning of the human eye and ophthalmic instrumentation. After training at the University of Rochester and the University of Arizona, he joined the faculty of the Ophthalmology Department to bridge the gap between clinical and applied optics.

Dr. Schwiegerling’s research interests include wavefront sensing and adaptive optics in the human eye, customized ophthalmic lenses and procedures, corneal topography, contact and spectacle lens design, ophthalmic instrumentation, and improvement of refractive surgery outcomes.

TOPIC

SHARE
Back to Top