This back matter contains the bibliography, index, and author's biography.



Alpern, M., G. L. Mason, R. E. Jardinico, “Pupil size changes associated with changes in accommodative vergence,” Am J Ophthalmol 52: 762-767 (1961).Google Scholar


Alvarez, L. W., “Two-element variable-power spherical element,” US Patent 3,305,294.Google Scholar


Ames, A., C. A. Proctor, “Dioptrics of the eye,” J Opt Soc Am 5: 22-84 (1921).Google Scholar


Applegate, R. A., V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: normal variations of peak location and directionality,” J Opt Soc Am A 10: 1611-1623 (1993).Google Scholar


Arend, O., R. Remky, D. Evans, R. Stuber, A. Harris, “Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes,” Invest Ophthalmol Vis Sci. 38: 1819-1824 (1997).Google Scholar


Atchison, D. A., G. Smith, Optics of the Human Eye. (Butterworth-Heinemann, Oxford, 2000).Google Scholar


Barten, P. G. J., Contrast Sensitivity of the Human Eye and Its Effects on Image Quality (SPIE Press, Bellingham, WA, 1999).Google Scholar


Boettner, E. A., J. R. Wolter, “Transmission of the ocular media,” Invest Ophthalmol Vis Sci 1:776-783 (1962).Google Scholar


Chernyak, D. A., “Cyclotorsional eye motion occurring between wavefront measurement and refractive surgery,” J Cataract Ref Surg 30: 633-638 (2004).Google Scholar


Duane, A., “Normal values of the accommodation at all ages,” Trans Sec Ophthalmol AMA 53: 383-391 (1912).Google Scholar


Fannin, T. E., T. Grosvenor, Clinical Optics (Butterworth-Heinemann, Oxford, 1997).Google Scholar


Hecht, S., C. Haig, A. M. Chase, “The influence of light adaptation on subsequent dark adaptation of the eye,” J Gen Physiol 20: 831-850 (1937).Google Scholar


Holladay, J. T., “International Lens & Implant Registry 2004,” J Cataract Refract Surg 30: 207-229 (2004).Google Scholar


Howland, H. C., B. Howland, “A subjective method for measurements of monochromatic aberrations of the eye,” J Opt Soc Am 67: 1508-1518 (1977).Google Scholar


Humphrey, W. E., “Variable anamorphic lens and method for constructing lens,” US Patent 3,751,138.Google Scholar


International Commission on Non-Ionizing Radiation Protection, “Guidelines of limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm),” Health Phys 73: 539-554 (1997).Google Scholar


Ivanoff, A., “About the spherical aberration of the eye,” J Opt Soc Am 46: 901-903 (1956).Google Scholar


Judd, D. B., Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight. In: Proceedings of the Twelfth Session of the CIE, Stockholm. Paris: Bureau Central de la CIE (1951).Google Scholar


Klein, S. A., R. B. Mandell, “Axial and instantaneous power conversion in corneal topography,” Invest Ophthalmol Vis Sci 36: 2155-2159 (1995).Google Scholar


Kooijman, A. C., “Light distribution on the retina of a wide-angle theoretical eye,” J Opt Soc Am 73: 1544-1550 (1983).Google Scholar


Koretz, J. F., C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye: changes in the anterior segment and crystalline lens with focus,” Invest Ophthalmol Vis Sci 38: 569-578 (1997).Google Scholar


Koretz, J. F., C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in shape upon accommodation and with accommodative loss,” J Opt Soc Am A 19: 144-151 (2002).Google Scholar


Koretz, J. F., S. A. Strenk, L. M. Strenk, J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study, J Opt Soc Am A 21: 346-354 (2004).Google Scholar


Le Grand, Y., S. G. El Hage, Physiological Optics (Springer-Verlag: Berlin, 1980).Google Scholar


Liang, J., B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wavefront sensor,” J Opt Soc Am A 11: 1949-1957 (1994).Google Scholar


Lotmar, W., T. Lotmar, “Peripheral astigmatism in the human eye: experimental data and theoretical model prediction,” J Opt Soc Am 64: 510-513 (1974).Google Scholar


Malacara, D, Color Vision and Colorimetry: Theory and Applications (SPIE Press: Bellingham, 2002).Google Scholar


Mandell, R. B., “Location of the corneal sighting center in videokeratography,” J Refract Corneal Surg 11: 253-258 (1995).Google Scholar


McLeod, S., S. M. Pitts, “Reflection of light by small areas of the ocular fundus,” Invest Ophthalmol Vis Sci 16: 981-985 (1977).Google Scholar


Miller, D., Optics and Refraction: A User-Friendly Guide (Gower: New York, 1991).Google Scholar


Molebny, V. V., I. G Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, V. M. Sokurenko, “Retinal ray-tracing technique for eye refraction mapping,” Proc SPIE 2971: 175-183 (1997).Google Scholar


Moon, P., D. E. Spencer, “On the Stiles-Crawford effect,” J Opt Soc Am 34: 319-329 (1944).Google Scholar


Porter, J., A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J Opt Soc Am A 18: 1793-1803 (2001).Google Scholar


Poynton, C., Digital Video and HDTV. Algorithms and Interfaces (Morgan Kaufmann: Amsterdam, 2003).Google Scholar


Rabbetts, R. B., A. G. Bennett, Clinical Visual Optics (Butterworth-Heinemann: Oxford, 1990).Google Scholar


Rempt, F., J. Hoogerheide, W. P. H. Hoogenboom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162: 1-10 (1971).Google Scholar


Roufs, J. A., “Dynamic properties of vision. I. experimental relationships between flicker and flash thresholds,” Vis Res 12: 261-278 (1972).Google Scholar


Sivak, J. G., T. Mandelman, “Chromatic dispersion of the ocular media,” Vis Res 22: 997-1003 (1982).Google Scholar


Smirnov, M. S., “Measurement of the wave aberration of the human eye,” Biofizika 6: 687-703 (1961).Google Scholar


Stiles, W. S., J. M. Burch, “NPL colour-matching investigation: Final report,” Optica Acta 6: 1-26 (1959).Google Scholar


Stockman, A., L. T. Sharpe, “Cone spectral sensitivities and color matching,” In: Color Vision: From Genes to Perception. Eds: K. R. Gegenfurtner, L. T. Sharpe (Cambridge University Press: Cambridge, 2001).Google Scholar


Stockman, A., L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vision Research 40: 1711-1737 (2000).Google Scholar


Thibos, L. N., R. A. Applegate, J. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J Refract Surg 18: S652-S660 (2002).Google Scholar


Thibos, L. N., W. Wheeler, D. Horner, “Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,” Optom Vis Sci 74: 367-375 (1997).Google Scholar


Thibos, L. N., M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl Opt 31: 3594-3600 (1992).Google Scholar


Tscherning, M., “Die monochromatischen Aberrationen des menschlichen Auges,” Z Psychol Physiol Sinne 6: 456-471 (1894).Google Scholar


van Nes, F. L., M. A. Bouman, “Spatial modulation transfer in the human eye,” J Opt Soc Am 57: 401-406 (1967).Google Scholar


Von Noorden, G. K., Binocular Vision and Ocular Motility: Theory and Management of Strabismus, 4th ed. (Mosby: St. Louis, 1990).Google Scholar


Vos, J. J., “Colorimetric and photometric properties of a 2-deg fundamental observer,” Color Research and Application 3: 125-128 (1978).Google Scholar


Walsh, G., W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J Opt Soc Am A 1: 987-992 (1984).Google Scholar


Webb, R. H., C. M. Penney, K. P. Thompson, “Measurement of ocular wavefront distortion with a spatially resolved refractometer,” Appl Opt 31:3678-3686 (1992).Google Scholar


Winn, B., D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest Ophthalmol Vis Sci 35: 1132-1137 (1994).Google Scholar


Wyszecki, G., W. S. Stiles, Color Science (Wiley: New York: 1982).Google Scholar


Z136.1 ANSI Standard, “For the Safe Use of Lasers.”Google Scholar



http://cvrl.ioo.ucl.ac.uk/basicindex.htm The homepage for Colour & Vision Research Laboratories, Institute of Ophthalmology, University College London.Google Scholar


http://www.optics.arizona.edu/Palmer/rpfaq/rpfaq.htm The homepage for Radiometry and Photometry FAQ.Google Scholar


http://www.brucelinbloom.com The homepage for Color Science calculationsGoogle Scholar

page110-1.jpg Jim Schwiegerling is an Associate Professor of Ophthalmology and Optical Sciences at the University of Arizona. For the past five years, he has taught a course in visual optics, introducing engineers to the functioning of the human eye and ophthalmic instrumentation. After training at the University of Rochester and the University of Arizona, he joined the faculty of the Ophthalmology Department to bridge the gap between clinical and applied optics.

Dr. Schwiegerling’s research interests include wavefront sensing and adaptive optics in the human eye, customized ophthalmic lenses and procedures, corneal topography, contact and spectacle lens design, ophthalmic instrumentation, and improvement of refractive surgery outcomes.


Back to Top