Chapter 12:
Superresolution Processing of the Response in Scanning Differential Heterodyne Microscopy
Editor(s): Ari T. Friberg René Dändliker
Author(s): Baranov, Dmitry V. Zolotov, Evgeny M.
Published: 2008
DOI: 10.1117/3.793309.ch12
Heterodyne far-field optical microscopy, from the beginning of its development, has been an efficient tool for surface characterization with a high resolution. The use of a nondestructive optical imaging to collect metrological information is of ever-increasing importance. The importance follows from its simplicity of use and potentially high accuracy. Optical heterodyne microscopes made possible the observing and measuring of submicron structures. This is due to a possibility of precise measurement of phase and amplitude of the reflected signal at an intermediate frequency. In a conventional heterodyne microscope, the path of the reference and signal beams are separated, and the instrument is sensitive to vibrations and other environmental influences. Differential microscopes are relatively free of this shortcoming because the reference and signal components of the probe beam propagate along the same path (common path scheme). But this system requires a complex algorithm for processing the signal reflected from an object because the signal is not linear with respect to the surface profile. The microscope scan represents a nonlinear function of the convolution of the point-spread function and the optical profile. The interpretation of a complex response demands special superresolving processing in the analysis of microscopic objects with submicron size based on image formation theory.
Online access to SPIE eBooks is limited to subscribing institutions.

Back to Top